Opera Medica et Physiologica

MMP-9 in Control of Synaptic Plasticity: a Subjective Account

Author Affiliations

Nencki Institute , Warsaw, Poland

Corresponding author: 

Leszek Kaczmarek (l.kaczmarek@nencki.gov.pl)


Matrix metalloproteinase 9, MMP-9 is an extracellularly operating enzyme that has been demonstrated as an important regulatory molecule in control of synaptic plasticity, learning and memory. Either genetic or pharmacological inhibition of MMP-9 impairs late phase of long-term potentiation at various pathways, as well as appetitive and spatial memory formation, although aversive learning remains apparently intact in MMP-9 KO mice. MMP-9 is locally translated and released from the excitatory synapses in response to neuronal activity. Extrasynaptic MMP-9 is required for growth and maturation of the dendritic spines to accumulate and immobilize AMPA receptors, making the excitatory synapses more efficacious. Animal studies have implicated MMP-9 in such neuropsychiatric conditions, as e.g., epileptogenesis, autism spectrum disorders, development of addiction, and depression. In humans, MMP-9 appears to contribute to epilepsy, alcohol addiction, Fragile X Syndrome, schizophrenia and bipolar disorder. In aggregate, all those conditions may be considered as relying on alterations of dendritic spines/excitatory synapses and thus understanding the role played by MMP-9 in the synaptic plasticity may allow to elucidate the underpinnings of major neuropsychiatric disorders.