Opera Medica et Physiologica

Latest Articles

Printed December 25, 2016;
Published ahead of print December 20, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 173-176; doi:10.20388/omp2016.003.0036
Abstract Full Text

Given the recent findings on the importance of CD38 signaling in the pathogenesis of colon cancer. We hypothesized that single nucleotide polymorphisms (SNP) in the CD38 gene may be related to colon cancer risk. CD38 has a genetic polymorphism, characterized by a C>G variation in the regulatory region of intron 1. The working hypothesis is that the presence of different alleles in colon cancer patients accounts for some of the clinical heterogeneity. CD38 is considered a marker of prognosis and as an indicator the activation and proliferation of cells. We hypothesized that single nucleotide polymorphisms (SNP) in the CD38 gene may be related to colon cancer risk. We evaluated one potentially functional CD38 SNP, intronic rs6449182 in two cases patients and controls. Genotyping was done using PCR-based assays in a total of 93 patients with colon cancer and 100 controls. We found that frequencies of variant allele (rs6449182 G) were significantly higher in colon cancer. Logistic regression analysis revealed an association between colon cancer and genotypes: rs6449182 CC [odds ratio (OR), 0.57; 95% confidence interval (95% CI), 0.32 – 1.01], rs6449182 CG (OR, 1.47; 95% CI, 0.83 – 2.60), and rs6449182 GG (OR, 2.26; 95% CI, 0.66 – 7.77). We observed that rs6449182 G carriers had more advanced clinical stage (P = 0.04). In conclusion, our data show that CD38 SNP may affect CD38 expression and contribute to the increased risk of colon cancer carcinogenesis.

AttachmentSize
PDF icon OMP_2016_03_0036.pdf310.92 KB

Printed December 25, 2016;
Published ahead of print December 19, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 177-180; doi:10.20388/omp2016.003.0037
Abstract Full Text

The assembly of neural circuits during development endows the brain with the ability to perceive the environment, control motor output, and perform higher cognitive functions. Failure to assemble proper neural circuits may result in neurodevelopmental disorders including intellectual disability and autism spectrum disorders. Epigenetic mechanisms, and in particular chromatin remodeling, are potent regulators of neuronal connectivity. Here, we review recent studies highlighting the essential role of the ATPdependent nucleosomal remodeling and deacetylase (NuRD) complex in epigenetic programming of neurons to drive neural circuit assembly and organism behavior. 

AttachmentSize
PDF icon OMP_2016_03_0037.pdf499.46 KB

Printed December 25, 2016;
Published ahead of print December 18, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 181-187; doi:10.20388/omp2016.003.0040
Abstract Full Text

Isolated brain tumors contain cells that exhibit stem cell features and a tissue microenvironment bearing remarkable similarities to the normal neurogenic niche. This supports the idea that neural stem (NSCs) or progenitor cells, and their progeny are the likely tumor cell(s) of origin. This prompted the investigation of the relationship between NSCs/progenitors and the initiation of tumorigenesis. These studies led to the identification of common signaling machineries underlying NSC development and tumor formation, particularly those with known roles in proliferation and cell fate determination. This review will explore the molecular mechanisms that regulate NSC behavior in the neurogenic niche of the forebrain, and how deregulation of the developmental potential of NSCs might contribute to tumorigenesis. 

AttachmentSize
PDF icon OMP_2016_03_0040.pdf1.56 MB

Printed December 25, 2016;
Published ahead of print December 17, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 188-204; doi:10.20388/OMP.003.0034
Abstract Full Text

Neurons adapt to stimuli through activity dependent changes to their transcriptome, a process mediated by immediate-early gene networks.  Recent findings that transcriptional activation of neuronal immediate-early genes requires the formation of controlled DNA double-strand breaks (DSBs) has come as a surprise and has profound implications for neuronal function, especially in the aging brain.  Here we review recent literature surrounding the phenomena of activity-dependent DNA DSBs in neurons and how this process may be exploited by transposable elements (TEs) in both naïve and aging neurons.  We hypothesize the existence of Activity DEPendent Transposition (ADEPT), where neuronal excitation is able to induce genomic rearrangements through either de novo integration of TEs or by homology-directed recombination of TE-derived repetitive sequences.  Epigenetic drift may cause the magnitude of ADEPT to increase with age, leading to genome instability, which we suggest presages most, if not all, neurodegenerative diseases.

AttachmentSize
PDF icon OMP_2016_03_0034.pdf2.84 MB

Printed December 25, 2016;
Published ahead of print December 16, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 205-210; doi:10.20388/omp2016.003.0039
Abstract Full Text

The presynaptic modifications that accompany long-term changes in synaptic plasticity are still not fully understood. Synaptophysin is a major synaptic vesicle protein involved in neurotransmitter release. We have used quantitative electron microscopy to study synaptophysin (Syn) immunolabelling in the hippocampus of adult rats 24h after induction in vivo of long term potentiation (LTP), and long term depression (LTD). Electrodes were implanted chronically in hippocampus with stimulation at either the medial (MPP) or lateral perforant path (LPP). 24h following induction of LTP or LTD rats were rapidly perfusion fixed and hippocampal tissue processed to electron microscopy via freeze substitution method. Anti-synaptophysin post-embedding immunolabelling was performed and tissue was imaged in the middle molecular layer (MML) of the dentate gyrus. There was a significant decrease in number of Syn labelled vesicles per unit area of bouton after LTP, but not LTD. An analysis of the spatial distribution of Syn labelled synaptic vesicles showed an increase in nearest neighbour distances, more so in the LTP than the LTD group, which is consistent with the overall decrease of Syn after LTP. These data are in agreement with the suggestion that Syn is involved in clathrin-dependent and “kiss and run” endocytosis which occurs perisynaptically. Thus, an increase in release of neurotransmitter and in consequence endocytosis would be consistent with an increased active zone distance for vesicles containing Syn.

AttachmentSize
PDF icon OMP_2016_03_0039.pdf729.3 KB

Printed December 25, 2016;
Published ahead of print December 15, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 211-227; doi:10.20388/ OMP.003.0035
Abstract Full Text

Neural prostheses (NPs) link the brain to external devices, with an eventual goal of recovery of motor and sensory functions to patients with neurological conditions. Over the past half-century, NPs have advanced significantly from the early ideas that sounded like science fiction to the modern high-tech implementations. In particular, invasive recordings using multichannel implants have enabled real-time control of artificial limbs by nonhuman primates and human subjects. Furthermore, NPs can provide artificial sensory feedback, allowing users to perceive the movements of prosthetic limbs and their haptic interaction with external objects. Recently, NP approach was used to build brain-nets that enable information exchange between individual brains and execution of cooperative tasks. This review focuses on invasive NPs for sensorimotor functions.

AttachmentSize
PDF icon OMP_2016_03_0035.pdf658.45 KB

Printed December 25, 2016;
Published ahead of print December 14, 2016; Printed December 25, 2016; OM&P 2016 Volume 2 Issue 3, pages 228-234; doi:10.20388/omp2016.003.0038
Abstract Full Text

We revisit the Wendling-Chauvel neural mass model by reducing it to eight ODEs and adding a dierential equation that accounts for a dynamic evolution of the slow inhibitory synaptic gain. This allows to generate dynamic transitions in the resulting nine-dimensional model. The output of the extended model can be related to EEG patterns observed during epileptic seizure, in particular isolated pre-ictal spikes and low-voltage fast oscillations at seizure onset. We analyse the extended model using basic tools from slow-fast dynamical systems theory and relate the main transitions towards seizure states to torus canards, a type of solutions that has been shown to explain the spiking to bursting transition in many neural models. We nd that the original ten-dimensional Wendling-Chauvel model can be reduced to eight dimensions, two variables being scaled versions of two other variables of the model. We then obtain a model with four PSP blocks, which is consistent with the block-diagrams typically presented to describe this model. Instead of varying the slow inhibitory synaptic gain parameter B quasi-statically, or just performing numerical bifurcation analysis in B as the structure of the fast subsystem of an hypothetical extended system, we construct a true slow dynamics for B, depending sensitively on the main PSP output of the model, Y0. Near fold bifurcation of limit cycles of the original model, the solution to the extended model performs fast low-amplitude oscillations close to both attracting and repelling branches of limit cycles, which is the signature of a torus canard phenomenon.

AttachmentSize
PDF icon OMP_2016_03_0038.pdf588.73 KB

Printed July 23, 2016;
Published ahead of print July 10, 2016; Printed July 23, 2016; OM&P 2016 Volume 2 Issue 2, pages 87-102; doi:10.20388/OMP2016.002.0026
Abstract Full Text

Glycogen synthase kinase 3 (GSK-3) is an important molecular player involved into diverse cellular functions including metabolism, transcription, cell survival and synaptic plasticity. Here, we focused on characterization of the cognitive effects of GSK-3 inhibitor, a newly developed compound VP3.36. In particular, we assessed VP3.36 effects on working memory, episodic memory, executive functioning, spatial learning & memory and fear memory. VP3.36 (3 mg/kg) significantly enhanced working memory and spatial object recognition in C57BL/6J mice. The GSK-3 inhibitor was able to speed up solving obstacles given to experimental animals in the Puzzle test, thereby improving their executive functions. Lastly, VP3.36-treated mice learnt faster to find the escape platform in the Morris’ water maze and exhibited better spatial long-term memory than vehicle-treated animals. At the same time, GSK-3 inhibition did not affect fear memories, sensorimotor gating, emotional behavior or ambulation, suggesting that GSK-3 inhibition underlies specific cognitive processes, which are likely coupled with certain mechanisms of synaptic plasticity. Given that GSK-3 inhibition has clear effect on long-term depression (LTD), and the functional role of LTD in brain is still far from complete understanding, next, we probed effects of VP3.36 on synaptic LTD in the hippocampal CA1 subregion. We found that incubation of hippocampal slices with VP3.36 sufficiently prevented synaptic LTD, further supporting implication of GSK-3 into mechanisms of synaptic plasticity. Taken together, VP3.36 facilitated working memory, spatial episodic and long-term memory, enhanced executive functions in parallel with its ability to prevent synaptic LTD. Overall, our experiments showed implication of GSK-3 into mechanisms of synaptic plasticity and certain cognitive functions which help to deeper understand fundamental molecular-cellular mechanisms of cognitive enhancement’s processes. 

AttachmentSize
PDF icon OMP_2016_04_0026.pdf575.02 KB

Printed July 23, 2016;
Published ahead of print July 09, 2016; Printed July 23, 2016; OM&P 2016 Volume 2 Issue 2, pages 103-111; doi:10.20388/OMP2016.002.0027
Abstract Full Text

Matrix metalloproteinase 9, MMP-9 is an extracellularly operating enzyme that has been demonstrated as an important regulatory molecule in control of synaptic plasticity, learning and memory. Either genetic or pharmacological inhibition of MMP-9 impairs late phase of long-term potentiation at various pathways, as well as appetitive and spatial memory formation, although aversive learning remains apparently intact in MMP-9 KO mice. MMP-9 is locally translated and released from the excitatory synapses in response to neuronal activity. Extrasynaptic MMP-9 is required for growth and maturation of the dendritic spines to accumulate and immobilize AMPA receptors, making the excitatory synapses more efficacious. Animal studies have implicated MMP-9 in such neuropsychiatric conditions, as e.g., epileptogenesis, autism spectrum disorders, development of addiction, and depression. In humans, MMP-9 appears to contribute to epilepsy, alcohol addiction, Fragile X Syndrome, schizophrenia and bipolar disorder. In aggregate, all those conditions may be considered as relying on alterations of dendritic spines/excitatory synapses and thus understanding the role played by MMP-9 in the synaptic plasticity may allow to elucidate the underpinnings of major neuropsychiatric disorders.

AttachmentSize
PDF icon OMP_2016_04_0027.pdf352.98 KB

Printed July 23, 2016;
Published ahead of print July 08, 2016; Printed July 23, 2016; OM&P 2016 Volume 2 Issue 2, pages 112-116; doi:10.20388/OMP2016.002.0033
Abstract Full Text

We propose a new approach for the quantitative characterization of cognitive human brain activity during visual perception. According to the theoretical background we analyze human electro-encephalograms (EEG) obtained while the subjects observe ambiguous images. We found that the decision-making process is characterized by specific oscillatory patterns in the multi-channel EEG data.

AttachmentSize
PDF icon OMP_2016_02_0033.pdf1.47 MB

Pages