Opera Medica et Physiologica

Latest Articles

Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 49-53; doi:10.24412/2500-2295-2021-4-49-53
Abstract Full Text

The work aimed to study the protein spectrum, morpho-functional state of erythrocyte membranes under stress and correction by low-intensity laser radiation. The experiments were carried out in vitro. Low-intensity laser radiation with a wavelength of 830 nm and a power of 90 mw was used for irradiation. Laser therapy was performed using an autonomous laser shower "MarsIK" (NPO "Petrolaser", St. Petersburg). The protein fractions of red blood cells were analyzed by electrophoresis, the morphology of red blood cells by laser interference microscopy, the еletrophoretic mobility of erythrocytes was measured by microelectrophoresis in our modification and the concentration of malondialdehyde in red blood cells by reaction with thiobarbituric acid spectrophotometrically. It is proved that the change of protein fractions in the erythrocyte membrane under stress, a decrease in the amount of spectrin, band 3 protein, glycophorin and ankirin. The stress is characterized by an increase in the number of echinocytes, stomatocytes and degenerative-altered red blood cells. Exposure to LLLT on blood samples determined the recovery of the studied parameters to the control group values (physiological norm). The role of the discovered metabolic changes in RBC in stress and their correction by LLLT is under discussion.


Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 41-48; doi:10.24412/2500-2295-2021-4-41-48
Abstract Full Text

The article focuses on identifying specific eye movement parameters during reading unfamiliar words to study the formation of epistemic evaluation. The sample consisted of 40 students. 240 eye-tracking records were registered while the participants were reading 6 texts in Russian. The study revealed that the speed of saccades decreased, and the duration of fixations increased while reading an unknown word. Eye movements at first encounter of a new term may be an indicator of epistemic evaluation formation.


Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 33-40; doi:10.24412/2500-2295-2021-4-33-40
Abstract Full Text

Increase in the life expectancy of the population is associated with a tendency of aging in patients with chronic heart failure (CHF). Gender, age and genetic differences of the individual risk factors are still discussed in the aspect of influence on the heart failure clinical phenotype. The study aimed to identify the gender and age differences of chronic heart failure clinical characteristics in terms of the ZBTB17 gene (rs10927875) polymorphism. Materials and methods. A total of 351 patients with CHF of ischemic etiology of both genders were examined. The average age of men was 65.3±9.9, women  ̶  69.7±9.61 years. Results and conclusions: CHF of ischemic etiology in the absence of differences in the burdened family history, previous myocardial infarction (MI) observed mainly in middle-aged and elderly men and elderly and senile women. Significant gender differences in comorbidities were revealed: in 40% of men, CHF was associated with chronic obstructive pulmonary disease (COPD), in 47.3% of women ‒ with chronic kidney disease (CKD) and in 32.2% - with diabetes mellitus (DM). The distribution of rs10927875 polymorphism ZBTB17 genotypes were corresponded to the Hardy-Weinberg equilibrium (χ2 = 0.272, p = 0.873). CC genotype in men was associated with reduced left ventricular ejection fraction (LVEF). CT genotype in women associated with CHF FC III and IV due to the frequent indications in the past on myocardial infarction, concomitant DM, obesity and hypercholesterolemia. The CT genotype rs10927875 was characterized by a frequent combination of CHF with COPD in men and CKD and DM in women.


Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 23-32; doi:10.24412/2500-2295-2021-4-23-32
Abstract Full Text

SELENOM is a highly conserved protein, presented in different species and classes of animals, belongs to the family of thioredoxin–like folding proteins. It is known that SELENOM is more expressed in the brain and is very sensitive to selenium deficiency in this organ; it is involved in the regulation of calcium signaling, redox homeostasis, and apoptosis in brain cells. This study showed that SELENOM–knockdown in human glioblastoma cells (A–172 cell line) contributed to a decrease in the number of apoptotic A–172 cells after 24 or 48 h treatment with the known apoptosis inducer staurosporine, as well as a significant decrease in the number of necrotic cells after 48 h treatment with this inductor. A decrease in SELENOM ​​activity also led to a decrease in the Ca2+ ER–buffer capacity and influenced the level of mRNA expression of key ER–stress markers in glioblastoma cells.


Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 14-22; doi:10.24412/2500-2295-2021-4-14-22
Abstract Full Text

The aim of the work was to study the effects of photobiomodulation (PBM) in the red spectrum (640 nm) with fluences from 3 mJ/cm2 to 2 J/cm2 in combination with ionizing radiation (IR) at doses of 2-6 Gy against human BJ-5ta-hTERT - postnatal fibroblasts. The cells were exposed to low-intensity red light before or after their exposure to IR, the viability of the cells was determined by MTT 24 hours after the last exposure. It is shown that the effects of PBM depend on the fluence of PBM, the dose of IR and the sequence of the actions of these physical factors on cells. The adaptive effect of PBM was observed only for high fluences-1 and 2 J/cm2 when exposed to PBM and subsequent (after 1 hour) irradiation of IR. At the same time, the stimulating effect of PBM was observed only for low fluences from 3 to 300 mJ/cm2 under IR irradiation and subsequent (after 1 hour) exposure to PBM. These data should be taken into account when using PBM for the correction of adverse events of radiation therapy in an oncological clinic.


Full-length research paper
Printed December 20, 2021;
Published ahead of print December 28, 2021; Printed December 20, 2021; OM&P 2021 Volume 8 Issue 4, pages 5-13; doi:10.24412/2500-2295-2021-4-5-13
Abstract Full Text

Pulp diseases treatment may lead to complications, such as the development of apical periodontitis registered with the help of X-ray examination. At the same time, a dentist might provide endodontic treatment associated with apical periodontitis in case there are relevant X-ray changes. In both cases, the periapical status follow-up is required for causality assessment. CBCT data of 2915 endodontically treated teeth were studied assessing the distance from the X-ray root apex to the root filling, as well as assessing the periapical status and tracing the relation between those. It is least probable to detect periapical changes if the length of the root canal filling is 0-1 mm from the X-ray apex, more probable within the length of 1-2 mm, and most probable within the level of over 1 mm and 2 mm, correspondingly. An individual approach excludes the strategy of ‘indication — contra-indication’ related to the length of the root canal filling showing no ground to assess it as a success criterion for endodontic treatment or as an indication for retreatment regardless of the clinical case. In many situations, if there are no clinical signs of unsuccessful endodontic treatment, the periapical tissues follow-up strategy is well-grounded.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 65-71; doi:10.24412/2500-2295-2021-3-65-71
Abstract Full Text

Mitochondria-endoplasmic reticulum contacts (MERC) are known as one of the key regulators of many cell functions. In particular, MERC effects on the mobility and morphology of mitochondria, exchange of calcium and lipids between organelles, and participates in the processes of autophagy and apoptosis that are crucial for neuronal development. MERC can influence the functioning of the neurotrophic factor BDNF through the activation of the Sigma-1 receptor. That points to the presence of feedback i.e. itself BDNF influence on the structural characteristics of MERC. At the same time, the effect of chronic stimulation of BDNF or blockade of TrkB receptors on an ability to form contacts between mitochondria and ER is different and depends on cellular compartment.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 59-64; doi:10.24412/2500-2295-2021-3-59-64
Abstract Full Text

In probabilistic conditions, people choose low-payoff alternatives on some trials, thus failing to maximize their payoffs. We suggest that such behavior implicates exploration of task rules by choosing risky options instead of exploiting more rewarding alternatives. We hypothesized that exploration would affect brain responses to feedback. Further, a shift to exploration develops gradually and, therefore, a decision to make an exploratory choice may be observed on trials preceding risky choices. We investigated beta power (16–30 Hz) in the magnetoencephalographic data from 62 healthy participants performing a two-choice probabilistic gambling with monetary gains and losses. The effects were found at 600–800 ms after feedback onset in frontal, central and occipital brain regions. On trials preceding risky choices we identified a decrease in beta power which implies a change in decision-making strategy and a shift towards cognitive flexibility and exploration. An increase in beta power during risky decisions indicates that reward learning mechanisms are implicated. Increases in beta power following losses in risky choices indicates at the process of updating the internal representation of the task. In summary, current findings reveal that the outcomes of exploratory trials are processed differentially, while there is no evidence of such processing on exploitatory trials. This corroborates the hypothesis that exploratory choices represent active probing into the surmised task rules. Current findings also suggest that the processing of outcomes preceding the exploratory trials is altered in such a way that subjects override their intention to use the utility model and reset their behavioral strategy.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 52-58; doi:10.24412/2500-2295-2021-3-52-58
Abstract Full Text

Plastic changes in the neurons of the amygdala during learning in fear conditioning and their contribution to the modifications of behavior are well known, but the impact of hippocampal neurons in this behavioral task is not well studied to date. Recently a novel technique for simultaneous recording of calcium signal in multiple neurons in the brain of awake freely moving animals by miniature fluorescent microscope (miniscope) was developed. With the use of the miniscope, we have investigated neuronal activity in the CA1 area of hippocampus during memory formation and a recall in the task of contextual fear conditioning and correlated it with recorded mice behavior. Three epochs during learning were analyzed in mice behavior and brain activity: 120 s before, 2 s during, and 30 s after the electric shock. Memory retrieval was induced by placement of the animals for 180 s in the same context 24 h and 48 h after learning. The total amount of the neurons recorded in three mice was 507 during learning and 401 during memory retrieval. The patterns of neuronal activity were analyzed and discussed.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 42-51; doi:10.24412/2500-2295-2021-3-42-51
Abstract Full Text

Cognitive status and EEG in the theta, alpha, and beta ranges were studied using cluster analysis by discrete optimization in patients with cardiovascular disease in the preoperative period of coronary artery bypass grafting. The cognitive status was measured by Mini-Mental State Examination (MMSE) scale, and an integral indicator of cognitive status (IICS) formed on the basis of complex testing the indices of visual-motor responses, attention, and memory. The new method of clustering the EEG power and the cognitive status made it possible to distinguish groups of patients differenced by cognitive reserves. The IICS better differentiates groups than MMSE. The factors of age and education were decisive only in specific groups. The clusters characterized by the most represented cognitive reserves according to the higher both MMSE and IICS indicators included less pronounced activation of the cortex according to more power of the theta, alpha, and less beta rhythm. Patients with supposedly minimal reserves are differed by a low level of cognitive status, as well as education level together with higher activation state of the cortex. The third type of clusters was distinguished by an unstable composition due to the variability of EEG indicators in it, mostly cortical activity at the alpha1 frequencies. The EEG neurophysiological approach, together with cognitive screening and proposed clustering analysis, could be helpful in understanding mechanisms of cognitive reserves and identify the risk factors of postoperative cognitive dysfunction in patients with brain cardiovascular damage.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 34-41; doi:10.24412/2500-2295-2021-3-34-41
Abstract Full Text

The information influence in the modern globalizing world is a serious challenge to the security of any state. This article presents the results of an experimental study of the way the modern Internet media affect the cognitive attitudes of individuals on the example of two leading international TV channels – RT and BBC. In order to conduct this study our team developed an experimental plan for the psychophysiological recording of deformation of cognitive attitudes under the external informational influence. The study was conducted at the Department of Psychophysiology of the Lobachevsky State University of Nizhny Novgorod from March to May 2018. The experiment was conducted on twenty-one (21) volunteers aged from nineteen to thirty-six, the average age of the group being twenty-four. Since the largest audience of modern communication networks is the younger generation, they became the focus of the study. The authors analyzed the deformations of the cognitive attitudes of individuals to identify distinctive features of these processes.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 28-33; doi:10.24412/2500-2295-2021-3-28-33
Abstract Full Text

The extracellular matrix plays an important role in brain function. Recent findings suggest that disruption of hyaluronan-based extracellular matrix can cause seizure-like activity (Vedunova et al., 2013). Epilepsy can be characterized by an excessive influx of Ca2+ ions through (Ca2+) – permeable AMPA receptors, which may, in certain circumstances, contribute to seizures. Ca2+ – permeability of these receptors is dependent on RNA-editing of pre-mRNA transcript of GluA2 subunit at the Q/R site. Regulation of this process is carried out by a special nuclear enzyme, ADAR2 (Adenosine Deaminase Acting on RNA-2). Thus, the study of the principle of operation of this enzyme can contribute to understanding the mechanism of epileptogenesis.

AttachmentSize
4 HYALURONIDASE-DEPENDENT CHANGES.pdf380.06 KB

Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 20-27; doi:10.24412/2500-2295-2021-3-20-27
Abstract Full Text

Gamma band oscillations (25 - 70 Hz) play an important role in processing of information by neocortical neurons. In simple cells of the cat's visual cortex, it was previously shown that strength of gamma oscillations is modulated by the membrane potential oscillations at the temporal frequency of the stimulus. More recently, theoretical studies using a conductance-based neuronal model have shown that this coupling significantly improves visual stimulus encoding. Due to the availability of a broad range of genetic tools, mice had recently become an important experimental subject for research in various fields of neuroscience, including visual physiology. It has been suggested that gamma oscillations in the mouse visual cortex play a minor role in visual processing due to the lack of specialized neurons that take part in generating gamma oscillations. Here we show, using patch clamp recording from simple cells in the visual cortex of anesthetized mice, that the strength of gamma oscillations is modulated by the phase of stimulus-induced oscillations during visual stimulation with moving gratings. In addition, using patch clamp recording from mouse visual cortex neurons in slices, we demonstrated benefits of gamma activity modulation for encoding of slow sinusoidal signals into sequences of action potentials. Thus, the phenomenon of amplitude modulation of gamma oscillations by temporal frequency of stimulus, originally described in the visual system of cats, may represent a universal mechanism that improves encoding of visual information which is present even in animals with a relatively poorly developed visual system, such as mice.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 12-19; doi:10.24412/2500-2295-2021-3-12-19
Abstract Full Text

Emotion regulation is a popular research topic in social, clinical, cognitive psychology, and neurophysiology. Event-related potentials (ERPs) studies have high temporal resolution and are therefore conventionally used in emotion research to study the patterns of emotion processing. Advances in digital technologies are promoting neuro-psychological research of emotion and attention in virtual reality (VR). In this work, for the first time, we investigated how the presented emotional facial expressions in VR modulate ERP components in conditions of different combinations of passive or active attention and random or linear presentation sequence. We found the higher amplitude of the C1, N170, P2, P3, P4 ERP components in the condition of active attention compared to passive attention during the random presentation of emotional 3D facial expression. During the linear presentation of emotional 3D facial expressions, a statistically significant difference was found only for the C1 ERP component in conditions of both passive and active attention. We proved that the P2 ERP component represents the perception of positive and negative 3D facial expressions encoding the emotional valence of the stimuli. We also found no statistically significant difference in latency of ERP components between passive and active attention to emotional 3D facial expressions.


Full-length research paper
Printed September 28, 2021;
Published ahead of print September 20, 2021; Printed September 28, 2021; OM&P 2021 Volume 8 Issue 3, pages 5-11; doi:10.24412/2500-2295-2021-3-5-11
Abstract Full Text

Spontaneous activity is known to be a characteristic feature of the vast majority of the neocortical principal cells including neurons of the primary sensory areas. The question of how spontaneous activity interacts with perception and encoding of sensory information remains open. In the present study, pyramidal neurons of the mouse primary visual cortex were recorded extracellularly under urethane anesthesia and simultaneous single-channel EEG recording was performed. To evaluate orientation and direction selectivity of the recorded neurons, mice were presented with visual stimuli consisting of moving sinusoidal gratings of different orientations displayed on a monitor. We noted quite regular bursts of generalized brain activity that were manifested in the recorded neuron as bundles of action potentials accompanied with a distinctive EEG pattern. Clearly, whenever such spontaneous activity shows up during visual stimulation, it is considered as noise, which significantly compromises the characteristics of the neuron’s measured visual response. To eliminate this effect, we developed a machine learning-based algorithm that enables to identify EEG predictors of generalized spontaneous activity and then to exclude spontaneous (i.e. not evoked by visual stimulation) action potentials from the recording. Our algorithm was shown to reliably detect action potentials that have been caused by generalized brain activity. Removal of action potentials of this origin from extracellular recordings obtained during visual stimulation allows for a more adequate estimation of parameters of neuronal receptive fields, in particular their orientation selectivity.


Full-length research paper
Printed June 21, 2021;
Published ahead of print June 20, 2021; Printed June 21, 2021; OM&P 2021 Volume 8 Issue 2, pages 75-83; doi:10.24412/2500-2295-2021-2-75-83
Abstract Full Text

This work shows the in vivo effect of the bioactive triterpenoid betulonic acid on the liver of C57BL/10 mice and the functioning of the mitochondria of this organ. We have found that betulonic acid has no significant effect on the histological parameters of the mouse liver, as well as on the biochemical parameters of the blood serum of the studied animals. At the same time, betulonic acid has demonstrated mitochondrial targeting. Betulonic acid has shown a decrease in the functional activity of mitochondria, especially in the case of their energization with succinate, a substrate of complex II of the respiratory chain of organelles. Treatment with betulonic acid has no effect on the resistance of mouse liver mitochondria to the induction of a calcium-dependent MPT pore. On the other hand, we have revealed the antioxidant effect of betulonic acid associated with a decrease in the rate of H2O2 generation in the mouse liver mitochondria. The paper discusses the possible use of betulonic acid as a mitochondria-targeting agent.


Full-length research paper
Printed June 21, 2021;
Published ahead of print June 20, 2021; Printed June 21, 2021; OM&P 2021 Volume 8 Issue 2, pages 68-74; doi:10.24412/2500-2295-2021-2-68-74
Abstract Full Text

The study aimed to evaluate the effectiveness of previously developed methods of adaptive neurostimulation in correcting stress-induced states in specialists who demonstrate signs of post-traumatic stress disorder (PTSD) and professional burnout syndrome (PBS). Materials and methods. Each of the 17 stressed subjects participated in three examinations, alternated in random order. In the control experiment (control), simple listening to classical music was used. In two other examinations, musical or light-musical stimulation was used, automatically modulated by feedback signals from the rhythmic components of the subject's electroencephalogram (EEG). In the first case (musical feedback), the subjects were presented with music-like stimuli formed on the basis of the subject's alpha EEG oscillator. In the second case (double feedback), such musical stimulation was supplemented by rhythmic light stimuli generated by online transformations of the native EEG of the subject. Results. Comparison of the effects of both experimental conditions with the control one allowed us to establish that only in the presence of feedback from the EEG, there is a significant increase in the power of alpha EEG rhythm, accompanied by positive emotional reactions, a decrease in the level of disadaptation and stress, as well as a significant increase in the assessments of health and mood of the subjects. The most pronounced psychophysiological effects were recorded under light-music stimulation with double feedback from the EEG. Conclusion. The obtained results make it possible to suggest the described methods of adaptive neurostimulation as a means of psychotherapeutic correction of PTSD and PBS, especially during the COVID-19 pandemic.


Full-length research paper
Printed June 21, 2021;
Published ahead of print June 20, 2021; Printed June 21, 2021; OM&P 2021 Volume 8 Issue 2, pages 55-67; doi:10.24412/2500-2295-2021-2-55-67
Abstract Full Text

Using the methods of fluorescence microscopy, Tirf microscopy, inhibitory analysis, immunocytochemistry and PCR, it has been shown that in response to an increase in [Ca2+]o or a CaSR agonist – protamine in the minor population of white adipocytes, Ca2+ signals are rapidly generated – a short-term Ca2+ increase and Ca2+-oscillations, while in most cells the generation of Ca2+ responses occurs after a lag period of varying duration. White adipocyte signals for CaSR activation were completely suppressed in the presence of the selective CaSR antagonist, NPS2143, in both cell populations. When CaSR is activated, a calcium-dependent process of secretion of ATP-containing vesicles occurs, which was also suppressed by NPS2143 and a calcium-dependent secretion blocker tetanus toxin. After a 24- hour exposure to the CaSR activator protamine on white adipocytes, an increase in the level of expression of genes – Lipe, Atgl, Sirt1 and Sirt3, encoding hormone-sensitive lipase, triglyceride lipase, sirtuins 1 and 3, respectively. At the same time, an increase in the expression of these genes was not observed with the selective CaSR antagonist, NPS2143. Thus, one of the new mechanisms of activation of genes regulating white adipose tissue lipolysis can be assumed through an increase in [Ca2+]i in the minor population of CaSR-expressing adipocytes, followed by calcium-dependent ATP secretion and paracrine activation of the entire cell network, which will help play an important role in the regulation of the balance of lipogenesis/lipolysis processes.


Full-length research paper
Printed June 21, 2021;
Published ahead of print June 20, 2021; Printed June 21, 2021; OM&P 2021 Volume 8 Issue 2, pages 43-54; doi:10.24412/2500-2295-2021-2-43-54
Abstract Full Text

The three-dimensional structure of tumor tissue and particularly cell-cell and cell-extracellular matrix adhesion is an important factor that can determine the phenotype of tumor cells. In this work, we have investigated the abundance profile of actin-binding adhesion proteins in human ovarian adenocarcinoma cell lines SKOV-3 and SKOV-3.ip. We have investigated levels of total and superficially localized adherens junctions proteins E- and N-cadherin, gap junction protein сonnexin-43 and cell-extracellular matrix contacting integrin beta-1. Our results indicate a complete absence of epithelial marker E-cadherin, a low level of mesenchymal N-cadherin and high levels of connexin-43 and integrin beta-1. Modest superficial localization of the represented proteins was observed, indicating their mislocalization. SKOV-3 cell line was characterized by higher levels of the total content of studied cell-cell contacts proteins and a lower level of superficially localized integrin beta-1, which is both considered to be associated with lower tumor aggressiveness. The revealed differences in the profile of adhesion proteins are in line with the accepted view on SKOV-3.ip cell line having a more aggressive phenotype than that of SKOV-3. The revealed features of the total abundance of the adhesion proteins and their superficially localized pool made it possible to supplement the information on the nature of phenotypic differences between the studied cell lines.


Full-length research paper
Printed June 21, 2021;
Published ahead of print June 20, 2021; Printed June 21, 2021; OM&P 2021 Volume 8 Issue 2, pages 35-42; doi:10.24412/2500-2295-2021-2-35-42
Abstract Full Text

Relevance. The risk factors for urolithiasis include an increase in the daily excretion of lithogenic metabolites. These factors have not been sufficiently studied in childhood. Methods. We conducted a study of the 24-hour urinary excretion of calcium, oxalate and phosphorus in 196 patients (median age was 9.0 [6.0; 14.0] years, boys 23.5% (46/196)) with the urinary syndrome. Results. We found a statistically significantly higher daily urinary excretion of oxalates in boys compared to girls, 18.1 [11.2; 25.6] mg/day and 14.1 [9.6; 21.3] mg/day, respectively, p = 0.012. However, these differences manifest themselves only at the age of 10 years and older, amounting to 23.85 [11.2; 25.5] mg/day in boys and 13.91 [8.02; 18.9] mg/day in girls, p = 0.005. We did not establish gender differences in daily calcium excretion, p = 0.45. At the same time, we revealed gender differences in daily phosphorus excretion in boys compared with girls 23.25 [15.0; 38.0] mmol/day and 18.9 [10.6; 29.2] mmol/day, respectively, p = 0.013. These patterns were also typical only for the age older than 10 years – in boys 31.7 [21.1; 43.0] mmol/day, in girls 17.9 [11.6; 30.9] mmol/day, p = 0.003. Conclusions. Boys aged 10 years and older have a statistically significantly higher 24-hour urinary excretion of oxalate and phosphorus than girls. This may indicate the gender dependence of some lithogenic factors and the need for increased attention to the prevention of nephrolithiasis during early puberty.


Pages