This study examined female rats' physiological and histological responses to cadmium chloride and lead acetate. Histological lung tissue examinations included oxidative stress and antioxidant status. Six female rat groups were studied. A group that served as a control was provided with water that had been distilled. The dosage of cadmium chloride that was administered to the second group was 5 mg/kg, whereas the dosage that was administered to the third group was 10 mg/kg. The fourth group received a dosage of lead acetate that was 50 mg/kg, whereas the fifth group received 100 mg/kg. All of the standard concentrations of lead acetate and cadmium chloride were administered to the sixth group in accordance with their protocol. Following thirty days of treatment of cadmium chloride and lead acetate to rats, the levels of oxidative indicators like MDA and 8-OHDG showed a substantial increase (P < 0.05). On the other hand, the levels of antioxidants like GSH, SOD, and CAT showed a significant drop (P ≤ 0.05 following the administration of these substances. Histological research has shown that exposure to cadmium chloride and lead acetate is associated with an increased risk of blood clots in the lungs as well as a thickening of the pulmonary alveolar wall. This is in comparison to a control group. These results demonstrate that cadmium chloride and lead acetate treatment adversely affected lung tissue's physiological and histological properties. The researchers discovered that the detrimental effect was more pronounced when the two drugs were administered concurrently to rats.