Opera Medica et Physiologica

Archive

Issue 2 | June 2017

Published ahead of print July 16, 2017; Printed June 30, 2017; OM&P 2017 Volume 3 Issue 2, pages 48-58; doi:10.20388/omp2017.002.0045
Abstract Full Text

The rapid advance of super-resolution microscopy and its experimental applications has provided neuroscientists with a pass to the nanoscopic world of synaptic machinery. Here we will briefly overview and discuss current progress in our understanding of the three-dimensional synaptic architecture and molecular organisation as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We will argue that such methods are to take our knowledge of synapses to a qualitatively new level, providing the neuroscience research community with novel organising principles and concepts pertinent to the workings of the brain. 


AttachmentSize
OMP_2017_02_0045.pdf878.89 KB
Published ahead of print June 19, 2017; Printed June 30, 2017; OM&P 2017 Volume 3 Issue 2, pages 39-47; doi:10.20388/omp2017.002.0047
Abstract Full Text

The aim of the present study was to explore the effects of 8-OH-DPAT, 5-HT1A receptor agonist and NAN-190, 5-HT1A receptor antagonist on anxiety-related behavior in the adult gonadectomized (GDX) male rats. Moreover, another goal of this work was to investigate whether the combination of 8-OH-DPAT or NAN-190 plus testosterone propionate (TP) could affect anxiety-like behavior more than TP alone in the adult GDX rats. Two weeks after gonadectomy, GDX rats were subjected by treatments with the solvent, TP (0.5 mg/kg, s.c.), 8-OH-DPAT (0.05 mg/kg, s.c.), NAN-190 (0.1 mg/kg, i.p.), 8-OH-DPAT in a combination with TP or NAN-190 in a combination with TP during 14 days. Experimental groups of GDX rats and control group of intact males were then tested in the elevated plus maze (EPM) and the open field test. 8-OH-DPAT treatment failed to modify anxiety-like behavior of GDX rats in the EPM as compared to the GDX rats given with oil solvent. NAN-190 injected alone or in combination with TP to GDX rats resulted in a significant anxiolytic-like effect as compared to the GDX given with oil solvent or TP application. Our data indicate that the combination of NAN-190 and TP is more effective than TP alone in GDX rats inducing a more profound anxiolytic-like effect in the EPM. Thus, the results of this study suggest that effects of 5-HT1A receptor agonist/antagonist can modify anxiety level in opposite direction in male rats after gonadectomy.


AttachmentSize
OMP_2017_02_0047.pdf400.38 KB
Published ahead of print June 18, 2017; Printed June 30, 2017; OM&P 2017 Volume 3 Issue 2, pages 31-38; doi:10.20388/omp2017.002.0046
Abstract Full Text

Nitric oxide (NO) signalling contributes to many biological processes involved in activity-dependent fine tuning of neuronal communication. NO is involved in early developmental signalling of the nervous system and is associated with pathological pathways and age-related decline in neuronal function, thus playing a critical role in regulating neuronal function in physiology and disease. Here we assessed the effects of modulating endogenous neuronal nitric oxide synthase (NOS) activity on synaptic function, specifically on neurotransmitter release at the glutamatergic Drosophila neuromuscular junction (NMJ). We found that the absence of NOS activity enhanced synaptic release at the NMJ and conversely, overexpression of NOS diminished transmitter release. The effects of alterations in NO signalling are the consequence of acute signalling at the synapse as we did not observe any developmental changes in NMJ morphology or synaptic parameters, such as expression of the active zone protein, bruchpilot, which could account for changes in release. Ultrastructural analysis did not show any developmental effects in boutons from larvae with reduced NOS activity. Together, our data present evidence for a negative regulation of transmitter release by NO which has implications for physiological synaptic function but also pathological and age-related dysregulation of synaptic signalling. 

 


AttachmentSize
OMP_2017_02_0046.pdf3.06 MB