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Abstract. Computational models for two neuron/astrocyte networks are developed to explore mechanisms underlying 
the astrocytes’ role in maintaining neuronal firing patterns. For the first network, a single neuron receives periodic 
excitatory inputs at varying frequencies. We consider the role played by several astrocytic dendritic processes, including 
the Na+-K+ ATPase pump, K+  channels and gap junctions in maintaining extracellular ion homeostasis so that the neuron 
can faithfully sustain spiking in response to the excitatory input. The second network includes two neurons coupled 
through mutual inhibitory synapses. Here we consider the role of astrocytic dendritic processes in maintaining anti-
phase or synchronous oscillations. Dynamical systems methods, including bifurcation theory and fast/slow analysis, is 
used to systematically reduce the complex model to a simpler set of equations. In particular, the first network, consisting 
of differential equations for the neuron and astrocyte membrane potentials, channel state variables and intracellular and 
extracellular Na+ and K+ concentrations, is reduced to a one dimensional map. Fixed points of the map determine whether 
the astrocyte can maintain extracellular K+ homeostasis so the neuron can respond to periodic input. 
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Introduction

For many years, glial cells were considered to merely 
provide structural support, with no relevant contribution 
to cognitive functions. However, numerous studies over 
the past decade have demonstrated that glial cells are 
active players in signal processing and there is now little 
doubt that advanced brain function is achieved through 
dynamic interactions among neuronal and glia networks. 
Among glial cells, astrocytes are believed to perform 
many functions, including maintenance of extracellular 
ion balance, control of cerebral blood flow, modulation 
of synaptic transmission, and neurotransmitter uptake 
and release (Iadecola & Nedergaard, 2007; Barres, 2008; 
Newman, 2003; Giaume et al., 2010; Kouji & Newman, 
2004; Attwell et al., 2010; Nedergaard et al., 2003). Several 
studies have demonstrated that astrocytes may play 
a critical role in the modulation of neuronal network 
activity, including oscillations and synchronization, 
mainly through their role in ion homeostasis and uptake 
of the neurotransmitters GABA and glutamate (Bellot-
Saez et al., 2017; Poskanzer & Yuste, 2016; Szabo et al., 
2017, Pannasch et al., 2011; Amiri et al., 2013; Chever et al., 
2016; Haydon & Carmignoto, 2016). Finally, alterations 
in normal astrocytic physiology have been associated 
with several neuropsychiatric, neurodevelopmental, and 
neurodegenerative diseases, including epilepsy, stroke, 
Rett syndrome and Alzheimer’s disease (Allaman et al. 
2011; Barres, 2008; Chen & Swanson, 2003; Kimelberg & 
Nedergaard, 2010; Nedergaard & Dirnagle, 2005; Somjen, 
2001). 
An important role of astrocytes is to maintain a nearly 
constant extracellular K+ concentration in the face of 
neuronal activity that would tend to increase it (Kofuji 
& Newman, 2004; Bellot-Saez et al., 2007; Ransom 1996; 

Muller 1996). Failure of astrocytes to maintain proper 
extracellular K+ concentrations has been implicated in 
neurological diseases such as epilepsy and stroke (Dirnagl 
et al., 1999; Kimelberg & Nedergaard, 2010; Moskowitz et 
al., 2011; Nakase et al., 2003; Zhao & Rempe, 2010). A basic 
hypothesis for extracellular  K+ clearance, or K+ spatial 
buffering, was introduced more than a half century ago 
(Kofuji & Newman, 2004; Orkand et al., 1966). However, 
recent experiments have demonstrated that astrocyte gap 
junction coupling may play a crucial role in extracellular 
ion homeostasis (Ma et al., 2016). In brief, strong gap 
junction coupling provides isopotentiality to the astrocytic 
network by minimizing the membrane potential 
depolarization that follows increased levels of K+; this, in 
turn, maintains a strong K+ inward driving force, which is 
critical for efficient astrocytic control of brain homeostasis. 
The syncytial isopotentiality also provides a stronger and 
sustained driving force for interastrocyte spatial transfer 
through gap junction channels and a sustained driving 
force for K+ release. 
In this study, we develop computational models for 
two neuron/astrocyte networks to explore mechanisms 
underlying the astrocytes’ role in maintaining neuronal 
firing patterns. For the first network, a single neuron 
receives periodic excitatory inputs at varying frequencies. 
We consider the role played by several astrocytic dendritic 
processes, including the Na+- K+  ATPase pump, K+ 

channels and gap junctions in maintaining extracellular 
ion homeostasis so that the neuron can faithfully sustain 
spiking in response to the excitatory input. The second 
network includes two neurons coupled through mutual 
inhibitory synapses. Here we consider the role of 
astrocytic dendritic processes in maintaining anti-phase 
or synchronous oscillations. 
A primary goal of this paper is to mathematically study 
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the dependence of network behavior on various model 
parameters and cellular processes. This is done using 
dynamical systems methods, including bifurcation theory 
and fast/slow analysis, to systematically reduce the complex 
model to a simpler set of equations. In fact, we reduce the 
first network, consisting of differential equations for the 
neuron and astrocyte membrane potentials, channel state 
variables and intracellular and extracellular Na+ and K+ 
concentrations, to a one dimensional map. Fixed points 
of the map determine whether the astrocyte can maintain 
extracellular K+ homeostasis so the neuron can respond to 
periodic input. 

Methods 

We consider two neuron/astrocyte network models. 
Each cell is modeled as a single compartment using the 
Hodgkin-Huxley formalism (Ermentrout & Terman, 
2010). There are equations for the membrane potentials 
and ionic currents, as well as equations for Na+ and 
K+ concentrations both inside the cells and in the 
shared extracellular space. There are also equations 
for the neuronal and astrocytic Na+-K+ ATPase pumps. 
Simulations of the model were done using the numerical 
software XPPAUT (Ermentrout, 2002). 

Network 

The first network consists of a single neuron that receives 
periodic excitatory input. The neuron is coupled to a 
single astrocyte through a shared extracellular space. 
The astrocyte is coupled to other astrocytes through gap 
junctions. 

Neuron: The neuron’s membrane potential, VN, satisfies 
the equation

C dV
dt

I I I Im
N

Na K PN exc= − − − − .
		
		  (1)

The first two terms on the right hand side of this equation 
correspond Na+ and K+ currents. These are defined as

Note that there are both Na+ and K+ leaks. As in (Huguet 
et al., 2016), we assume that h = 1 − n and n satisfies a 
differential equation of the form
dn
dt

n V n VN n N= ( ) −( ) ( )∞φ τ/ . 			  (2)
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The Nernst potentials are given byons 

and 	 	 (4)

where R,T and F are the gas constant, temperature and 
Faraday’s constant, respectively, and Ki, Ke, Nai and Nae 
are the K+ and Na+ concentrations in the neuron’s cytosol 
and extracellular space. 
As in (Kager et al., 2002) the Na+-K+ ATPase pump current 
is given by

		  (5)

where ρN  represents the maximal pump current. 
T h e term Iexc corresponds to periodic, excitatory 
synaptic input and is given by

Suppose that the input is at fr hz. For each integer j and tj = 
j* fr /1000, we let s(tj) = 1 and

s’(t) = -s(t)    for   tj  <  t  <  tj+1

The neuron model parameters are:
 

Units for the maximal conductances (g’s) are mS/cm2 and 
half activation variables (θ’s) are mV.
Astrocyte: The astrocyte’s membrane potential, VA,  
satisfies the equation

		
		  (6)

where Cm
A  = 1 µF/cm2 and IK
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and INa
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and Na+ leak currents; 
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The term IKir corresponds to an inward rectifying K+ 
current (Ransom, 1996), and is given by
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The Nernst potentials, EK
Aand ENa

A  as well as the ATPase 
pump current IPA, are defined very similar 
to (4) and (5).
The term Igap corresponds to electrical coupling with 
another astrocyte that is electrically coupled with other 
astrocytes within a syncytium. We assume that this other 
astrocyte remains in steady state; that is, its membrane 
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potential, VA
0 , and intracellular K+ and Na+ concentrations, 

KiA
0  and NaiA

0 , are constant. We assume that

 VA
0

= -90 mV, KiA
0   = 135 mM and NaiA

0  = 12 mM.

As in (Ma et al., 2016; Huguet et al., 2016), we model Igap 
using the Goldman-Hodgkin-Katz equation. That is, Igap = 
IKgap + INagap where
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Here, φA = (F/RT)(VA VA− 0 ). The constants PKgap and 
PNagap are the K+ and Na+ permeabilities, 
averaged over the entire cell membrane. Following (Ma et 
al., 2016), we assume that
PKgap = dgap PK          and          PNagap = 0.8 PKgap

where PK = 6 10−5 cm/s. We will vary dgap, gK
A and gKir in the 

analysis to determine how the dynamics depends on 
gap junction coupling strength and K+ currents.
Ion concentrations:  The neuron’s intracellular K+ and 

Na+ concentrations 
satisfy the equations

			   (9)

where SN is the neuron’s surface area and ΩN is the volume 
of the neuron’s cytoplasm. The factor ’10’ is needed for 
consistency of units. 
The astrocyte’s intracellular K+ and Na+ concentrations 
satisfy the equations 

where SA is the astrocyte’s surface area and ΩA is the 
volume of the astrocyte’s cytoplasm. 
The extracellular K+ and Na+ ion concentrations satisfy the 
equations (10)

where ΩE is the volume of the extracellular space, which is 
assumed to be a fixed fraction of the neuron’s volume; that 
is, ΩE = α0 ΩN. In the simulations, we let SN = 104 μm2, ΩN = 5 
103 μm3, SA = 1.6 103 μm2, ΩA = 2 103 μm3 and α0 = .3.

Network II

Network II consists of two mutually coupled neurons. 
Each neuron shares extracellular space with an astrocyte, 
which, as before, is electrically coupled with another 
astrocyte. Both ’units’, consisting of a neuron, astrocyte 
and shared extracellular space, are modeled precisely as 
Network I above, except we replace the Na+ and K+ leaks 
in (1) by a single leak current, IL = gL(VN − EL), where gL 
= .02 and EL = −60 mV. Moreover, we replace the excitatory 
current, Iexc, in (1) by a term corresponding to inhibitory 
synaptic input from the other neuron. That is, if j = 1 or 2, 
then we replace Iexc in the voltage equation for neuron j 
with

Figure 1. Solutions of Network I for different values of input frequency (fr), the strengths of the neuron’s Na+-K+ ATPase pump 
(pN) and the strength of gap junction coupling (dgap). For each plot, pA = .5, gK

A = 3 and gKir = 0. A) With gap junctions, the 
neuron can maintain firing for moderate pump strengths and input frequencies. B) Even with gap junctions, sufficiently high 
input rates lead to depolarization block. C) Without gap junctions, the neuron cannot maintain firing at 10 hz, unless, as 
shown in D), the pump strength is sufficiently high.
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I g s V Esyn
j

syn k N
j

syn= −( )
where k  ≠ j and sk satisfies the equation
s s s V sk k N

k
k

'
.= −( ) ( ) −∞α β1

Here, Esyn = −85 mV is the synaptic reversal potential and 
s∞ is defined as in (3). The parameter values for Network II 
are the same as Network I, except θn =−55, τ1 =2, φ=.2, gsyn 
=.05 and β=.18.

Results

Solutions of the two networks

Solutions of Network I are shown in Fig. 1. This figure 
demonstrates that whether the model can maintain 
repetitive spiking depends on several factors including 
the input frequency (fr), the strengths of the Na+-K+ 
ATPase pumps (ρN and ρA) and the strength of gap 
junction coupling (dgap). Fig. 1A shows that the neuron 
can maintain a 30 hz firing rate for 5 seconds for moderate 
levels of gap junction coupling and Na+-K+ ATPase pump 
strengths. However, as shown in Fig. 1B, if the input rate is 
increased to 40 hz, then the neuron stops firing at around 3 
seconds, at which time it goes into so-called depolarization 
block. If we remove gap junction coupling by setting dgap 
= 0, then, as shown in Fig. 1C, the neuron cannot maintain 
periodic firing, even at a lower input rate of 10 hz. If we 
increase the Na+-K+ ATPase pump strength, then, as 
shown in Fig. 1D, the neuron is able to maintain periodic 
firing. 
In Fig. 2 we illustrate the range of values of the Na+-K+ 
ATPase pump strengths (with ρN = ρA) and input 
frequencies for which the neuron is able to maintain 
spiking for 10 seconds. We consider the two cases: ( gK

A , 
gKir) = (3, 0) and ( gK

A , gKir) = (0, 1). We choose a smaller 
value for gKir to account for the K+ dependence of 

IKir  open probability. The neuron exhibits depolarization 
block for values of pump strengths and input frequencies 
above each curve. 
Without gap junctions (dgap = 0), there is almost no 
difference between these two cases in the frequencies 
at which the neuron can maintain steady spiking. In 
particular, without gap junctions, the inward rectifying K+ 
current does not seem to enhance K+ buffering, which is 
needed to prevent Ke from rising above the threshold for 
depolarization block. 
With gap junctions (dgap = 1), the neuron can maintain 
higher firing rates with just IKir  than with just IK

A  if the 
pump strengths are sufficiently strong. This is 
mainly because the threshold for Ke when the neuron 
exhibits depolarization block increases at higher pump 
strengths. (This will be demonstrated later.) Large Ke 
values strengthen IKir and enhance K+ buffering. 
Fig. 3 shows solutions of Network II. With gap junction 
coupling (dgap = 1), the network maintains anti-phase 
spiking. However, without gap junction coupling (dgap = 
0) the network switches from anti-phase to synchronous 
spiking at around 4.5 seconds. For this simulation, gKir = 
1 and gK

A
 = 0. The result is almost identical if instead, 

gKir = 0 and gK
A  = 3. 

Isopotentiality and K+ buffering

Our results demonstrate that astrocytic gap junctional 
coupling plays a critical role in maintaining neuronal 
firing patterns. The basic mechanism underlying this 
behavior is so-called K+ spatial buffering: gap junction 
coupling allows astrocytes to maintain a nearly constant 
extracellular K+ concentration in the face of neuronal 
activity that would tend to increase it (Kofuji & Newman, 
2004; Orkand et al., 2006). If the gap junction coupling 
strength is weak, then the astrocytes are not able to clear 
elevated extracellular K+ levels. This leads to increased 
neuronal excitability, which may change their firing 

0 .2 .4 .6 .8 1
0

20

40

60

80

Freq

ρN = ρA

gKA= 0; gKIR= 1; dgap= 1

gKA= 3; gKIR= 0; dgap= 1

dgap= 0

Figure 2. The range of values of the Na+-K+ ATPase pump strengths (with pN = pA) and input frequencies for which the neuron 
is able to maintain spiking for 10 seconds. The neuron exhibits depolarization block for values of pump strengths and input 
frequencies above each curve. The dgap = 0 (blue) curve corresponds to both cases: (gK

A, gKir) = (0,1) and (gK
A, gKir)= (3,0). 
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properties. When extracellular K+ concentrations rise 
above some threshold, the neurons exhibit depolarization 
block.  
How does strong gap junction coupling lead to K+ spatial 
buffering? This depends on so-called isopotentiality; that 
is, an astrocyte’s associated syncytium provides powerful 
electrical coupling that equalizes the astrocyte’s membrane 
potential with its neighbors (Ma et al., 2016). To understand 
why isopotentiality leads to K+ spatial buffering, we first 
note that K+ currents are normally outward; that is, they 
allow for the flow of K+ ions from the cell’s inside to the 
extracellular space. In general, we can express a K+ current 
as IK = gK(VA − EK

A ). If VA >  EK
A , then IK > 0 and the current 

is outward. In o r d e r for the K+ currents to be 
inward, the cell’s membrane potential must lie below the 
K+ reversal potential. When neurons spike, they release 
K+ into the extracellular space. Hence, Ke increases, as 
does  EK

A  = (RT/F) ln(Ke/KiA). However, because of 
isopotentiality, the astrocyte’s membrane 

potential remains nearly constant. This allows for VA <  
EK
A , so that the astrocyte’s K+ currents become inward and 

are, therefore, able to clear K+ from the extracellular 
space. 
In Fig. 4, we consider Network I and plot the response 
of VA and Ke to different excitatory input rates with (Fig. 
4A,B) and without (Fig. 4C,D) gap junction coupling. 
When dgap = 1, both the astrocyte’s membrane potential 
and extracellular K+ concentration remain nearly constant. 
However, when there are no gap junctions (dgap = 0), there 
is a steady rise in both VA and Ke even at low input rates. 
Fig. 5 shows plots of VA , EK

Aand IKir , with and without 
gap junctions, for the same solutions shown in 
Fig. 4 with an input rate of 10 hz. With gap junctions, VA 
falls below  EK

Aand IKir reverses (IKir < 0). Without gap 
junc t ions , VA tracks very closely with EK

Aand IKir 
remains negligible. 
Fig. 3C shows that for Network II, with strong gap 
junction coupling, Ke remains nearly constant; however, 

without gap junction coupling, there is a steady rise in K	
during neuronal firing.

Analysis

We mathematically analyze Network I by first making 
some simplifying assumptions and then reducing the 
full model to a simpler set of equations. The analysis 
leads to a single equation for just Ke. This will be used to 
determine the Ke threshold for when the neuron exhibits 
depolarization block and help explain the response of the 
model to excitatory input.
We begin by noting that the total amounts of K+ and Na+ 
ions are conserved. That is
						      (11)

are constant. We assume that

We now make several assumptions in order to derive a 
reduced model. We first assume intracellular neuron 
electroneutrality; that is, K Na K Nai i i i+ = +0 0  is 
constant. 
Our next assumption is that the astrocyte’s intracellular K+ 
and Na+ concentrations are constant; that is, K KiA iA= 0  
and Na NaiA iA= 0 . 
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Figure 3. Solutions of Network II. A) With gap junctions, the two neurons exhibit anti-phase oscillations. B) Without gap 
junction coupling, the network switches from anti-phase to synchronous spiking at around 4.5 seconds. C) With gap junctions, 
the model maintains a nearly constant Ke level, but not without gap junctions. D) Blow up of solution shown in B). 
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With these assumptions we can solve for all of the ion 
concentrations in terms of Ke and the Network I model 
reduces to equations for just VN , n, VA and Ke. 
We can reduce the model further using fast/slow analysis. 
The membrane potential VA clearly evolves on a time-scale 
much faster than the ion concentration Ke. Since the 
astrocyte does not ’spike’, we may assume that VA is close 
to steady state; that is, the right hand side of (6) is, to 
leading order, zero and we can solve for VA in terms of the 
other variables. Note that if there is no IKir current (gKir = 0) 
then the right hand side of (6) is, in fact, a linear function of 
VA. This is because if K KiA iA= 0  andNa NaiA iA= 0  , 

then the gap junction current can be written as

I g V V

where

g F
RT
d P K Na

gap gap A A

gap gap K iA iA

= −( )

= +( )

0

2

0 0
8.

		  (12)
Setting the right hand side of (6) equal to zero, we find that

V g E g E I I
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The full Network I model is now reduced to equations for 
just VN, n and Ke, which we write as

C dV
dt

I I I I

dn
dt

n V n
V

dK
dt

V n

m
N

Na K PN exc

N

n N

e
N

= − − − −

=
( ) −( )
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∞φ

τ

¦ , ,KKe( )				    (14)

Assume, for now, that there is no excitatory input. Then 
fast/slow analysis is used to analyze the reduced system. 
If we consider the slow variable Ke to be a bifurcation 
parameter in the fast subsystem for (VN, n), then the 
resulting bifurcation diagram is shown in Fig. 6. Note that 
there is a stable fixed point for 
K K
and
K K

e HB

e HB

< ≈

> ≈

1

2

10 35

25 75

.

.

There is a subcritical Hopf bifurcation at K Ke HB= 1  and 
a supercritical Hopf bifurcation 
at K K Be H= 2 . Moreover, there are stable periodic orbits 

for K B K K BH e H
1 2< < .  

We next consider the evolution of the slow variable Ke. 
This is done using the method of averaging. Denote the 
fixed points of the fast subsystem as (Vfp(Ke), nfp(Ke)) and 
the stable periodic orbits as (VP(t, Ke), nP(t, Ke)). Let T(Ke) 
be the period of the periodic orbits. Near the branch of 
stable fixed points, Ke satisfies, to leading order, 

We compute Φfp (Ke ) and Φave (Ke ) numerically and the 
result is shown in Fig. 7A.
We first consider the Ke dynamics near the branch of stable 
fixed points of the fast subsystem with 0 1< <K Ke HB .
Note that there exists KP < KHB

1 such 
that  Φfp (Ke )=0. Moreover, Φfp (Ke )>0 for 0 < Ke < KP and 
Φfp (Ke )<0 for KP < Ke < KHB

1. This implies that Ke → KP as 
t→ ∞. 
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Figure 4. Solutions of Network I showing VA and Ke. Here, gKir = 3 and gK
A = 0. A,B) With gap junctions the network can 

maintain nearly constant VA and Ke , even at 20 hz input. C,D) This is not the case if there are no gap junctions. 
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We next consider the spiking regime when 
K B K K BH e H

1 2< < . As shown in Fig. 7A, Φave (Ke )>0. 

Hence, Ke must increase and the neuron must approach 
depolarization block. 
This analysis demonstrates that K Ke HB= 1  is the threshold for 
when the neuron exhibits depolar izat ion 
block. Fig. 7 shows that this threshold is an increasing 
function of the neuron’s Na+-K+ ATPase pump strength. 
We next consider the neuron’s response to periodic 
excitatory input. Whenever the neuron spikes, there is 
also a spike in IK. This leads to a fast rise in Ke. We now 
assume that at the spike times, Ke increases by a fixed 
amount, which we denote as Kδ. Based on numerics (see 
Fig. 4), we let Kδ= .38 mM. 
Between spike times, Ke satisfies (14), which depends 
on VN  and n. We use fast/slow analysis to express these 
other variables in terms of Ke. This is done by first setting 
the right hand sides of (1) and (2) equal to zero and then 
solving for (VN, n) in terms of Ke. However, the right hand 
side of (1) is a nonlinear function of VN and n. In order to 
obtain an explicit formula for VN, we note that between 
spikes, VN is near a resting state and the channel activation 
terms, m∞

3 (VN) and n4, are very small. We, therefore, use 
the approximation 

INa  ≈  gNaL(VN − ENa)    and    IK  ≈  gKL(VN − EK).               	 (15)                         

In this case, the right hand side of (1) is linear in VN and 
does not depend on n. Setting the right hand side of (1) 
equal to zero, we find that

V g E g E I
g gN

NaL Na KL K PN

NaL KL

=
+ −
+ 			   (16)

We can now express Ф in (14) as a function of just Ke; we 
denote this function as Ψ(Ke). This is done by first replacing 
IK by the approximation given in (15) and then using (16). 
In summary, the reduced model is the following. Suppose 
that the excitatory input is at fr hz. For each integer j and tj 
= j · fr /1000, 
K t K t K

dK
dt

K for t t t

and
e j e j

e
e j j

+ −

+

( ) = ( ) +

= ( ) < <

δ

¨ ������
1

			   (17)

Solutions of this reduced model are shown in Fig. 8. With 
gap junctions (Fig. 8A) the neuron can maintain firing at 
10 and 20 hz, since, in both cases, Ke remains below the 
threshold for depolarization block. Without gap junctions 
(Fig. 8B) the neuron cannot maintain firing at 10 hz if 
ρN = .5, since Ke increases past this threshold. However, 
increasing the neuron’s Na+-K+ ATPase pump strength to 
ρN = 1 allows the neuron to maintain a 10 hz firing rate. 
Finally, we construct a 1-dimensional map; fixed points of 
the map correspond to the asymptotic behavior of Ke for 
the reduced model. To define the map, fix K0 > 0 and let 
Ke(t; K0) be the solution of (17) with Ke(0; K0) = K0. Then the 
map is defined as simply 
 
П � K K f K Ke

r
0 0

1000
( ) = 






 +; δ

Note that a fixed point of this map corresponds to a 
periodic solution of the reduced model (17).
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4 with an input rate of 10 hz. With gap junctions, VA falls 
below EK

A and IKir reverses (IKir < 0). Without gap junctions, 
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A and IKir remains negligible. 
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In Fig. 8C,D we plot  П(Ke)−Ke  for the same parameter 
values used in Fig. 8A,B. Fixed points of П(Ke) correspond 
to zeros of the corresponding curves. Note in Fig. 8D that 
if dgap =0 and ρN =.5, then П(Ke) > Ke for all values of Ke 
below the threshold for depolarization block. Hence, Ke 
must steadily increase past the threshold. 

Discussion

The main goals of this paper were to: 1) develop 
computational models to study mechanisms underlying 
astrocytes’ role in maintaining neuronal firing patterns; 
and 2) use mathematical tools to systematically reduce the 
complex model to a simpler system in order to characterize 
how solutions depend on network parameters and cellular 
processes. Simulations of the computational model 
demonstrate the importance of gap junctional coupling 
in K+ spatial buffering and, thereby preventing elevated 
levels of extracellular K+ leading to depolarization block. 
Using dynamical systems methods, we reduced the full 
Network I model to a one-dimensional map. Fixed points 
of the map determine whether the astrocyte can maintain 
extracellular K+ homeostasis so the neuron can faithfully 
respond to periodic input. 
The basic mechanism for extracellular K+ clearance 
described in this study extends the concept of K+ spatial 
buffering, which was introduced more than a half century 
ago (Kofuji & Newman, 2004; Orkand et al., 1966). There 
have been several experimental, modeling, and analytic 
studies of K+ spatial buffering since then (Gardner-
Medwin, 1983,Gardner-Medwin & Nicholson, 1983; Chen 
& Nicholson, 2000). However, the classic description does 
not take into account isopotentiality of the astrocyte 
syncytium. With sufficiently strong and widespread gap 
junction coupling, astrocytes near the region of elevated K+ 
concentration do not depolarize significantly and this 
provides a powerful driving force, E VK

A
A− , for K+ 

uptake through membrane K+ channels. 

This important role of syncytial isopotentiality was 
speculated in previous papers (Muller, 1996); however, 
this was not experimentally demonstrated until (Ma et 
al., 2016). As demonstrated in (Ma et al., 2016) syncytial 
isopotentiality minimizes the local high Ke-induced VA 
depolarization, and this maintains a sustained driving 
force for K+ uptake. By extension, syncytial isopotentiality 
also increases the driving force for K+ release in distant 
regions where Ke remains at the physiological level. 
Additionally, increase in both driving forces creates a 
maximum driving force for intracellular K+ transfer from a 
high K+ region to remote regions with normal K+. Therefore, 
syncytial isopotentiality facilitates all three critical steps in 
K+ spatial buffering: K+ uptake, intercellular transfer and 
release (Kofuji & Newman, 2004). Furthermore, recent 
experiments demonstrate that syncytial isopotentiality 
arises in several regions throughout the central nervous 
system and may be a unified mechanism governing the 
operation of astrocyte networks (Kiyoshi et al., 2019; 
Kiyoshi & Zhou, 2019; Huang et al., 2018). 
Some papers have proposed that the inward rectifying K+ 
current, IKir, is primarily responsible for K+ buffering. A 
computational model developed in (Sibille et al., 2015), 
for example, suggests that astrocytic Kir4.1 channels are 
sufficient to account for elevated extracellular K+ clearance, 
even without gap junctional coupling. However, there are 
important differences between the model presented in 
(Sibille et al., 2015) and that developed in this paper. In 
particular, the astrocyte membrane equation in (Sibille 
et al., 2015) contains a nonspecific leak current with a 
fixed reversal potential that helps stabilize the astrocyte 
membrane potential at -80 mV. This keeps the astrocyte’s 
membrane potential sufficiently hyperpolarized during 
neuronal activity so that IKir can reverse to an inward 
current. In our model, the astrocyte’s membrane potential 
remains hyperpolarized due to gap junctions and 
isopotentiality. 
There have been numerous earlier papers that have 
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addressed various issues related to modeling signals in 
astrocyte-neuronal networks. In particular, several papers 
have introduced models for spreading depolarizations, 
spreading depression, epilepsy, persistent activity and 
the propagation of Ca2+ waves (Cressman et al., 2009; 
Frohlich & Bazhenov, 2006; Hubel & Dahlemm 2014; 
Hubel et al., 2014; Huguet et al., 2016; Kager et al., 2002; 
O’Connell & Mori, 2016; Somjen et al., 2008; Ullah et 
al., 2009; Wei et al., 2014; Zandt et al., 2011). Moreover, 
several papers have used dynamical systems methods 
to reduce the complexity of the models and analyze how 
the neuronal spiking activity depends on the astrocytes’ 
ability to maintain ion homeostasis (Barreto & Cressman, 
2011; Cressman et al., 2009; Frohlich & Bazhenov, 2006; 
Oyehaug et al., 2012; Zandt et al., 2011). Many of these 
previous models assumed that the role of the astrocytes 
is to simply buffer extracellular K+; this was modeled by 
including a simple buffering term in the equation for 
extracellular K+. We have built on and extended previous 
modeling studies by incorporating a detailed biophysical 
model for the astrocytes, considering the role played by 
gap junctions and reducing a model for the response of 
neurons to excitatory input to a one dimensional map. 
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