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Abstract. During the COVID-19 pandemic, the number of cases of community-acquired pneumonia (CAP) increased 

dramatically, which significantly changed the dynamics of its incidence time series (TS). Such changes overestimate 

the predicted values of the incidence of CAP and increase the forecast error. The purpose of this work was to evaluate 

methods for predicting the dynamics of CAP incidence during the COVID-19 pandemic. The CAP incidence data, 

registered within the time period from 2011 to 2022 was used. Two TS data were compiled, which did not include and 

included cases of CAP caused by COVID-19 in 2021-2022. TS data transformation was performed using outliers’ de-

letion, seasonal decomposition, or X-13-ARIMA-SEATS techniques. Typical monthly dynamics calculation method 

and several adaptive regression models (ETS, SARIMA, decSARIMA) were used for CAP incidence modeling and 

forecasting. For CAP incidence TS data that excluded cases of COVID-19 pneumonia, all analyzed transformation 

techniques effectively smoothed out the outlier period making the TS data suitable for modeling using adaptive regres-

sion models. For CAP incidence TS data that included cases of COVID-19 pneumonia, the methods of TS decomposi-

tion turned out to be ineffective. An acceptable forecast error was obtained when using typical monthly dynamics model 

based on the TS data with deleted outliers. 
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List of Abbreviations 

ARIMA – autoregressive integrated moving 

average 

CAP – community-acquired pneumonia 

CAP TS – time series of CAP indices data 

excluding cases of pneumonia caused by 

COVID-19 

CAP+COVID TS – time series of CAP indi-

ces data including cases of pneumonia caused 

by COVID-19 

COVID-19 – coronavirus disease  

decSARIMA – mixed model of incidence 

rate based on time series decomposition and 

SARIMA 

ETS – error-trend-seasonality 

SARIMA – seasonal autoregressive inte-

grated moving average 

SEATS – signal extraction and ARIMA 

time-series 

STL – seasonal-trend decomposition using 

LOESS 

TMD – typical monthly dynamics 

TS – time-series 

Introduction 

Community-acquired pneumonia (CAP) is a 

widespread infectious disease, the causative 

agents of which include a wide range of micro-

organisms of bacterial, viral and fungal nature. 

CAP make a significant contribution to the 

structure of morbidity and mortality from infec-

tious diseases throughout the world. 

In 2020, the epidemiological situation re-

garding the incidence of CAP sharply worsened 

due to the emergence of the new coronavirus in-

fection (COVID-19) pandemic. For example, in 

Russia in the period preceding the COVID-19 

pandemic, the incidence rates of CAP varied 

from 315.1 0/0000 in 2011 to 518.9 0/0000 in 2019. 

In 2020, the incidence of CAP increased to 

1856.2 0/0000 (3.6 times), mainly due to cases of 

disease caused by COVID-19 (COVID-19 

pneumonia). At the same time, the number of 

deaths from CAP increased almost 12 times.  

The seasonal factors influence the CAP inci-

dence rate. There are certain differences in the 

seasonality of CAP depending on the etiology 

of the disease (Bobyleva et al., 2018). Despite 
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the fact that the increase of the CAP incidence 

generally occurs in the cold period of the year, 

the CAP seasonality, for example, caused by 

Streptococcus pneumoniae is limited to the au-

tumn months (Botvinkin et al., 2022) and My-

coplasma pneumoniae extends to the autumn-

winter period (Rachina & Bobylev, 2016). The 

annual dynamics of CAP incidence rate caused 

by viral agents is closely related to the inci-

dence of influenza and acute respiratory viral 

infections, so its maximum occurs at the end of 

winter – beginning of spring (Botvinkin et al., 

2022; Onishchenko et al., 2013; Saltykova et 

al., 2020). To date, most cases of CAP remain 

etiologically undeciphered (Bobyleva et al., 

2018; Yakovenko & Kravchenko, 2014). In 

general, the CAP incidence time series (TS) 

data, obtained from the federal statistical sur-

veillance database, reflects the total effect of 

several etiological factors.  

Despite the fact that when analyzing the total 

CAP incidence TS, it is often difficult to deter-

mine the true reasons underlying changes in the 

series (for example, a local rise or decline in in-

cidence, changes in seasonality), identifying 

general patterns of the TS dynamics is a useful 

tool for medium- and long-term forecasting of 

CAP morbidity and planning sanitary and anti-

epidemic measures. 

The COVID-19 pandemic and the peculiari-

ties of recording of CAP cases in federal statis-

tical forms during this period have made signif-

icant changes to the CAP incidence TS. From a 

statistical point of view, the CAP incidence TS 

data for 2020–2021 contain numerous outliers 

– data points that stand out from the general 

sample. Such outliers overestimate the average 

values of the TS which affects the results of 

analysis and forecasting of morbidity. On the 

other hand, the spread of COVID-19 and the 

complex of sanitary and anti-epidemic 

measures carried out during a pandemic had an 

impact on the CAP incidence in general, and 

these changes must be taken into account when 

making medium- and long-term forecasts. 

Thus, analysis and forecasting of the CAP 

incidence requires the usage of flexible statisti-

cal approaches that make it possible to reduce 

the influence of periods of epidemic without 

losing sensitivity to possible TS level changes. 

Widely used methods of TS analysis and mod-

eling, as a rule, solve only one of two problems. 

Thus, simple averaging methods make it possi-

ble to identify and eliminate outliers in a time 

series, but have low sensitivity to levels change. 

Adaptive regression models reproduce well the 

dynamics of the incidence TS, but are suscepti-

ble to the influence of outliers. A good result 

can be shown by a combination of several meth-

ods using preliminary transformation of a TS 

data (Kondratyev, 2013). 

The purpose of this work was to evaluate 

methods for predicting the dynamics of CAP in-

cidence during the COVID-19 pandemic. 

 

Materials and Methods 

Data source 

The study was performed using data ob-

tained in the Nizhny Novgorod region – a large 

region in central Russia with a population of 

3,144,245 people (data as of 2022). Population 

characteristics of the region, such as birth rate, 

mortality and morbidity, as well as income lev-

els are comparable to federal ones. The total 

number of registered CAP incidences for the 

period of 2011-2022 and the size of the perma-

nent population of the region for the specified 

period were obtained from the database of the 

Federal State Statistics Service. Two monthly 

CAP incidence (0/0000) TS data were created 

for the period from 2011 to 2022 inclusive. The 

first TS did not include cases of COVID-19 

pneumonia (CAP TS), and the second TS in-

cluded cases of COVID-19 pneumonia 

(CAP+COVID TS) for 2021 and 2022. Both TS 

data included cases of COVID-19 pneumonia 

for 2020, since at that time they were recorded 

as CAP cases in statistical forms. 

 

Software 

Transformation of TS data, construction 

of models, forecasting and calculation of er-

ror rates was performed in the R software 

environment (version 4.2.1 (R Core Team, 

2022)) using “stats” (R Core Team, 2022), 

“forecast” (Hyndman & Khandakar, 2008) 

and “seasonal” (Sax & Eddelbuettel, 2018) 

packages. 
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Time-series modeling 

Each of the two TS data was used to build 

several types of models with preliminary data 

transformation. The following approaches were 

used for TS data decomposition: 

1. Outliers deletion from the set of monthly 

incidence values. Outliers were defined as val-

ues above Q3 + 1.5*IQR or below Q1 -

1.5*IQR, where Q1, Q3 are the values of the 

first and third quartiles, IQR is the interquartile 

range. To preserve the integrity of TS deleted 

points were replaced by the values Q3 + 

1.5*IQR or Q1 -1.5*IQR, respectively. 

2. Seasonal-Trend decomposition using 

LOESS (STL) (Cleveland, 1990; Sanchez-

Vazquez, 2012). After decomposition, the re-

sulting trend and seasonal components or their 

sum were used for modeling. 

3. X-13-ARIMA-SEATS1 decomposition 

(Sax & Eddelbuettel, 2018). After decomposi-

tion, the resulting trend and seasonal compo-

nents or their sum were used for modeling. 

Transformed TS dats was modeled using the 

following models and techniques: 

1. Typical (averaged) monthly dynamics 

(TMD) (Slobodenyuk, 2015). 

2. Exponential smoothing model with addi-

tive seasonality (additive Holt-Winters model, 

ETSad, ETS (A, A, A)) (Ke et al., 2016; Kuan 

et al., 2022). 

3. Exponential smoothing model with mul-

tiplicative seasonality (Holt-Winters multipli-

cative model, ETSmult, ETS (A, A, M)) (Ke et 

al., 2016; Liu et al., 2020). 

4. Seasonal multiplicative autoregressive 

model - integrated moving average (seasonal 

ARIMA, SARIMA) (Chen et al., 2022; Kuan, 

2022; Liu et al., 2020; Tan et al., 2022). 

5. Mixed model of incidence rate based on 

time series decomposition and SARIMA methods 

(decSARIMA) (Filatova & Solntsev, 2019). 

For building models 1-4 in cases of data 

transformation with STL and X-13-ARIMA-

SEATS techniques, the sum of the trend and the 

seasonal components was used. For building 

model 5, the trend and the seasonal component 

were modeled separately and the resulting mod-

els were summed up. The selection of model 

coefficients was carried out by enumeration; the 

best model was selected based on the values of 

the Akaike criterion. The autocorrelation of the 

residuals was tested using the Ljung-Box Q test 

(Q test, did not perform with TMD model). 

 

Forecasting quality 

Transformed TS data for 2011-2021 inclu-

sive were used as a training sample. The values 

of the obtained models were extrapolated for a 

lead period of 12 months for forecasting. The 

limits of the predictive interval for the TMD 

model were calculated as lower and upper con-

fidence limits (Rachina & Bobylev, 2016), for 

other models - in accordance with the formula 

for calculating the forecast variance. To test the 

predictive ability of the constructed models, ac-

tual data on CAP incidence in 2022 was used. 

The predictive ability of the models was as-

sessed using mean absolute error (MAE), mean 

absolute percentage error (MAPE) and mean 

absolute scaled error (MASE) (Hyndman & 

Koehler, 2006). In the latter case, the TMD 

model forecast based on the original not trans-

formed TS values was used as a naive forecast. 

 

Ethical approval 

Anonymized data that is freely available was 

used in this work. 

 

Results 

We analyzed two CAP incidence TS data for 

the period from 2011 to 2022. For each TS data, 

14 morbidity predictive models were built. 

The CAP TS in 2021-2022, was character-

ized by a pronounced increase of the incidence 

rate from May 2020 to January 2021 inclusive 

(Fig. 1, supplementary materials). Subse-

quently, the CAP incidence rate decreased to 

values comparable to the period preceding the 

COVID-19 pandemic. The increase in CAP in-

cidence rates within CAP+COVID TS data was 

more extended and covered the period from 

May 2020 to February 2022 inclusive. 

As shown in the Figure 2 and supplementary 

materials, the data transformation eliminated 

the overestimation of CAP incidence rates dur-

ing the COVID-19 pandemic for both CAP TS 

and CAP+COVID TS. Outliers deletion tech-

nique reduced the CAP incidence rates for 
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2020-2021 to Q3 + 1.5*IQR. TS decomposition 

methods included increased CAP incidence val-

ues into the random component, so those were 

excluded from further analysis. However, for 

CAP+COVID TS data the lasting outliers pe-

riod was partially regarded by decomposition 

algorithms as a level change, so the increased 

CAP incidence values constituted both trend 

and random component. Thus, the decomposi-

tion methods turned out to be effective only for 

CAP TS data. 

It should be noted that TS decomposition 

methods allowed to identify the contribution of 

the seasonal factor into the CAP incidence rate. 

For both CAP TS and CAP+COVID TS data 

decomposition methods demonstrated a posi-

tive contribution of the seasonal factor into the 

CAP incidence within the periods from January 

to April and from October to December, as well 

as a negative contribution within the period 

from May to September (Fig. 2, supplementary 

materials). 

Based on the analysis of residuals auto-

correlation and forecast errors of CAP TS 

data models we selected three best forecast-

ing approaches: outliers deletion + multipli-

cative ETS, X-13_ARIMA-SEATS decom-

position + multiplicative ETS and outliers 

deletion + SARIMA (Table 1, Fig. 3, supple-

mentary materials). Despite the autocorrela-

tion of the residuals, all models of CAP TS 

data  demonstrated a smaller forecast error 

rates compared to the naive forecast. In all 

cases, the forecasting error was associated 

with an overprediction of the CAP incidence, 

while periods of increase and decrease of the 

morbidity were predicted adequately (sup-

plementary materials). 

Forecast errors for CAP+COVID TS data, 

on the contrary, had extremely high values (Ta-

ble 2, supplementary materials) and predicted 

morbidity values were overestimated tenfold. 

The only approach that made it possible to ob-

tain a forecast with an acceptable error level 

was outliers deletion + TMD. Note that this ap-

proach, among all those tested, obtained a 

smaller error rate compared to the naive fore-

cast (Table 2, Fig. 3).
 

Table 1 

 

Characteristics of predictive models of CAP indices excluding COVID-19 cases 

 

Data 

transformation 
Model 

Model residual 

independence (Q*, p) 

Forecast error 

MAE, 

0/0000 

MAPE, 

% 
MASE 

Outliers deletion TMD NT 25.21 135.88 0.76 

Outliers deletion ETSad 
Q* = 13.15 

p = 0.358 
20.00 107.38 0.60 

Outliers deletion ETSmult 
Q* = 9.07 

p = 0.697 
10.44 48.73 0.31 

Outliers deletion 
ARIMA (3, 1, 0) (1, 1, 2) 

(Liu et al., 2020) 

Q* = 9.58 

p = 0.653 
16.26 82.98 0.49 

STL TMD NT 25.36 143.04 0.76 

STL ETSad 
Q* = 228.24 

p < 0.001 
15.36 78.54 0.46 

STL ETSmult 
Q* = 130.03 

p < 0.001 
20.96 116.95 0.63 

STL 
ARIMA (1, 1, 4) (1, 1, 2) 

(Liu et al., 2020) 

Q* = 5.7 

p = 0.930 
18.42 99.27 0.55 
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End of table 1 

Data 

transformation 
Model 

Model residual 

independence (Q*, p) 

Forecast error 

MAE, 

0/0000 

MAPE, 

% 
MASE 

X-13-ARIMA-

SEATS
TMD NT 27.23 148.40 0.82 

X-13-ARIMA-

SEATS
ETSad 

Q* = 55.97 

p < 0.001 
15.33 75.79 0.46 

X-13-ARIMA-

SEATS
ETSmult 

Q* = 16.00 

p = 0.191 
15.46 83.62 0.46 

X-13-ARIMA-

SEATS

ARIMA (1, 1, 0) (1, 0, 0) 

(Liu et al., 2020) 

Q* = 39.08 

p < 0.001 
16.27 83.21 0.49 

STL 

decSARIMA 

T: ARIMA (1, 1, 0) 

S: ARIMA (0, 1, 0) 

Q* = 24.48 

p = 0.017 
17.21 91.27 0.52 

X-13-ARIMA-

SEATS

decSARIMA 

T: ARIMA (2, 1, 0) (2, 0, 0) 

(Liu et al., 2020) 

S: ARIMA (1, 1, 0) (2, 1, 0) 

(Liu et al., 2020) 

Q* = 37.03 

p < 0.001 
18.87 102.80 0.57 

Note: NT – not tested 

Fig. 1. Time series of CAP incidence for 2011–2022 

The solid line indicates the incidence of CAP, including cases of COVID-19 pneumonia in 2021–2022. 

The dotted line indicates the incidence of CAP, excluding cases of COVID-19 pneumonia in 2021–2022. 

Gray color indicates cases of COVID-19 pneumonia in 2021–2022 
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Table 2 

 

Characteristics of predictive models of CAP indices including COVID-19 cases 

 

Data 

transformation 
Model 

Model residual 

independence (Q*, p) 

Forecast error 

MAE, 

0/0000 

MAPE, 

% 
MASE 

Outliers deletion TMD NT 21.05 51.39 0.53 

Outliers deletion ETSad 
Q* = 22.07 

p = 0.037 
85.18 284.11 2.14 

Outliers deletion ETSmult 
Q* = 2.74 

p = 0.997 
74.00 233.51 1.86 

Outliers deletion 
ARIMA (2, 1, 1) (1, 1, 0) (Liu 

et al., 2020) 

Q* = 6.10 

p = 0.911 
64.76 198.44 1.63 

STL TMD NT 39.60 128.12 1.00 

STL ETSad 
Q* = 280.36 

p <0.001 
252.49 805.30 6.36 

STL ETSmult 
Q* = 184.94 

p < 0.001 
288.14 911.89 7.25 

STL 
ARIMA (1, 1, 0) (1, 1, 1) (Liu 

et al., 2020) 

Q* = 9.87 

p = 0.628 
235.74 748.72 5.93 

X-13-ARIMA-

SEATS 
TMD NT 40.93 134.98 1.03 

X-13-ARIMA-

SEATS 
ETSad 

Q* = 61.25 

p < 0.001 
424.22 1344.73 10.68 

X-13-ARIMA-

SEATS 
ETSmult 

Q* = 32.85 

p = 0.001 
386.39 1205.19 9.73 

X-13-ARIMA-

SEATS 

ARIMA (3, 1, 0) (1, 0, 0) (Liu 

et al., 2020) 

Q* = 21.56 

p = 0.043 
364.53 1143.92 9.18 

STL 

decSARIMA 

T: ARIMA (1, 1, 0) (0, 0, 1) 

(Liu et al., 2020) 

S: ARIMA (5, 0, 0) 

Q* = 3.44 

p = 0.922 
232.08 737.54 5.84 

X-13-ARIMA-

SEATS 

decSARIMA 

T: ARIMA (1, 1, 0) (1, 0, 0) 

(Liu et al., 2020) 

S: ARIMA (2, 1, 1) (2, 1, 0) 

(Liu et al., 2020) 

Q* = 34.36 

p < 0.001 
357.51 1113.17 9.00 

 

Note: NT – not tested 
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Fig. 2. Transformation of the CAP incidence time series for the period 2011–2021 The figure shows the time 

interval from 2019 to 2021 inclusive 

CAP – the incidence of CAP, excluding cases of COVID-19 pneumonia in 2021–2022. CAP+COVID – the 

incidence of CAP, including cases of COVID-19 pneumonia in 2021–2022. AD – the actual data of the inci-

dence of CAP. OD – transformation with outliers deletion. The solid line shows the original TS (AD), the 

result of the transformation (OD) or the trend (STL, X-13-ARIMA-SEATS). The dotted line indicates the 

seasonal component (STL, X-13-ARIMA-SEATS). Columns indicate transformation residuals (OD) or ran-

dom component (STL, X-13-ARIMA-SEATS) 
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Fig. 3. Some models and forecast of CAP incidence. The figure shows the time interval from 2019 to 2021 

(for actual incidence and model) and 2022 (for actual incidence and forecast). CAP – the incidence of CAP, 

excluding cases of COVID-19 pneumonia in 2021–2022. CAP+COVID – the incidence of CAP, including 

cases of COVID-19 pneumonia in 2021–2022. OD – transformation with outliers deletion. The solid curve 

indicates the model values and the prognosis of the incidence of CAP. The dotted curve indicates the actual 

incidence rates. The colored area represents the forecast 95% prediction interval. The vertical dotted line 

indicates the boundary point of the simulation (January 2022) 
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Discussion 

The COVID-19 pandemic, which has been 

going on for more than three years, has had a 

negative impact on many statistical and analyt-

ical data, primarily medical, but also economic, 

demographic, logistics, social and others. The 

negative impact of the COVID-19 pandemic for 

statistical analysis was the formation of a set of 

outlier points located at the end of the TS data. 

The forecast for the period immediately follow-

ing the outliers area often has big error rate due 

to the influence of latter points. Borderline out-

liers provide an extremely negative impact on 

the quality of the prognosis made with adaptive 

regression models (ETS, ARIMA, SARIMA), 

which are widely used for short-term and mid-

dle-term forecasting. 

Regardless of whether COVID-19 pneumo-

nia cases were excluded or included, the outlier 

periods in both analyzed TS data had three sim-

ilar characteristics. Firstly, both periods had 

distinct start and end points, before and after 

which the CAP incidence values were compa-

rable. Thus, the relation of two consecutive 

points was 1.64 at the beginning of the period 

of rising morbidity, 0.52 or 0.51 at the end of 

the period (for CAP TS or CAP+COVID TS 

data, respectively). Secondly, both TS data re-

flected natural CAP seasonality with an in-

crease of the incidence rate in the autumn-win-

ter period and a decline in the summer months, 

including the pandemic period. The third fea-

ture was the relatively high length of the outlier 

period. Thus, for CAP TS data the outlier period 

lasted for 7% (9/132) of the training period data 

points. For the CAP+COVID TS data the out-

lier period lasted for 15% (20/132) of the train-

ing data points and 17% (2/12) of the test data 

points. 

The above indicates the necessity of treating 

the outlier period as a period of temporary level 

change and, therefore, of excluding this period 

from the analysis. There are three major ways 

to eliminate inflated values from a TS data: to 

eliminate the whole outlier period, to normalize 

the TS values (substitute outlier points only) or 

to decompose the TS with assigning outlier 

points values to the random component. Since 

the first method provide data loss, we only ana-

lyzed two remaining. Those demonstrated dif-

ferent results for CAP TS and CAT+COVID 

TS, which was due to TS features. 

A major difference between the outliers pe-

riod within CAP TS and CAP+COVID TS data 

was the proximity to the training and test data 

boundary point. In the case of the CAP TS data, 

the outliers period ended at the beginning of 

2021, that is 11 points before training and test 

boundary point. Those data amount was suffi-

cient for the outlier values to be classified by 

data transformation algorithms as “random” 

and excluded from further analysis. In our 

study, data transformation with outliers dele-

tion technique gave predictive models with the 

least error rate, although all analyzed transfor-

mation techniques could be successfully ap-

plied in the case. Thus, the choice of data trans-

formation method should be determined by the 

goals of the analysis: to make an accurate fore-

cast (outliers deletion method) or to obtain 

maximum information about morbidity dynam-

ics or its seasonality (TS decomposition meth-

ods). The transformed TS data is further suita-

ble for building adaptive regression models, 

while the use of more complex mixed modeling 

techniques (such as decSARIMA) did not pro-

vide any advantages in forecast accuracy. 

In the case of the CAP+COVID TS, the 

training and test border point was withing the 

outliers period, so all of the tested transfor-

mation algorithms based on TS data decompo-

sition (STL and X-13-ARIMA-SEATS) de-

fined the outliers period as the period of level 

change. This led to the inclusion of outlier 

points in the trend component, thereby retaining 

overestimated CAP incidence values in the data 

structure for further analysis, and subsequently 

provided a significant forecast error. In this sit-

uation, point-wise averaging techniques for 

both TS data transformation (outliers deletion) 

and TS modeling and forecasting (TPM) proce-

dures had a significant advantage over adaptive 

regression models due to high resistance to TS 

level changes. 

It should be noted that at the time of the 

study, we already had data on the CAP inci-

dence rate in 2022 and knew about the coming 

period of steady decline of the intensity of the 
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COVID-19 epidemic process. In a real situa-

tion, if it is necessary to predict the level of 

morbidity at the time of epidemic challenge, it 

is advisable to analyze two situations. The first 

forecast with point-wise averaging techniques 

should model the normalization of the inci-

dence rate during the lead-time period. The sec-

ond forecast should model the situation when 

the changed incidence rate does not tend to nor-

malization within the forecast period. In the lat-

ter case, the use of time series decomposition 

methods and adaptive regression models, on the 

contrary, will take into account the change in 

the incidence trend and will make it possible to 

create a more accurate prediction. 

Conclusion 

Using the CAP incidence data for 2011-

2022, including the COVID-19 pandemic pe-

riod, we examined the data transformation, 

modeling and forecasting techniques. Withing 

the time of transient epidemic challenge it is ad-

visable to transform a data by replacing statisti-

cal outlier points by averaged values or using 

time series decomposition methods. In case of 

CAP TS data, that is when challenge period is 

fully withing training data, the most accurate 

forecast of CAP incidence was obtained by us-

age of the outlier deletion transformation tech-

nique and adaptive regression models (ETS, 

SARIMA). In case of CAP+COVID TS data, 

that is when challenge period is partially within 

training data, the most accurate forecast was ob-

tained by usage of the outlier deletion transfor-

mation technique and TMD model. Results of 

this work would be useful for analyzing and 

forecasting morbidity based on time series with 

periods of atypical rise or decline in morbidity. 
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