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Abstract. The role of chaos in biological information processing has been established as an  important breakthrough 
of nonlinear dynamics, after the early pioneering work of J.S. Nicolis and notably in neuroscience by the work of Walter 
J. Freeman and co-workers spanning more than three decades.  In this work we revisit the subject and we further focus 
on novel results that reveal its underlying logical  structure when  faced with the cognition of ambiguous stimuli. 
We demonstrate, by utilizing a minimal model for apprehension and judgement related to Bayesian updating,  that 
the fundamental characteristics of a biological processor obey in this case an extended, non-Boolean, logic which is 
characterized as  a quantum logic. And we realize that in its essence the role of chaos in biological information processing 
accounts for, and is fully compatible with, the logic of “quantum cognition” in psychology and neuroscience.
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“To ‘observe’ you need a priori categories, but to form categories you need observations.” 

J.S. Nicolis & I. Tsuda (1999)

‘... perception depends dominantly on expectation and marginally on sensory input.’ 

Walter Freeman (1995) 

Introduction: Chaos and Biological Information.

Dynamical systems as mathematical models, have 
always been used as one of the primary tools for 
understanding and predicting biological behaviour. 
This understanding, traditionally, was based on 
classical physics although recently quantum-physical 
considerations are also coming into play. With the advent 
of nonlinear chaotic dynamics the very notion that 
determinism implies predictability has been shattered 
and the role of the existing causal relations became less 
evident concerning the forecasting power for complex 
nonlinear dynamical systems. Although J.C. Maxwell 
and H. Poincaré were the first to postulate on the inherent 
predictive limitations due to the sensitive dependence 
on initial conditions exhibited by chaotic systems, it took 
almost a century for this idea to find roots in the mind of 
the scientific community at large. Now, we realize that 
predictions for nonlinear, complex systems can only be 
discussed in terms of a probabilistic framework, like in 
weather forecasting to mention an everyday example of 
complexity, and causality can be inferred by available, 
necessarily incomplete, information [Nicolis G. & Nicolis 
C., 2012; Basios & MacKernann, 2011].

Dynamical systems are described by their phase -or 

state- space, a space where their main variables define 
and live in. A trajectory in the phase space describes the 
dynamics and temporal evolution of the system. An 
attractor is a region in phase space where all, i.e. ‘almost 
all’ in mathematical terms, trajectories will eventually 
reside. Each attractor is characterized of it’s stability 
properties, and its dimensionality as well as its statistical 
and probabilistic, or measure-theoretic, aspects [Nicolis 
G. & Nicolis C., 2012]. We have all kinds of attractors, 
stable, unstable, metastable and for higher than two 
dimensional phase spaces of chaotic dynamics the so 
called ‘strange attractors’ came to be known. Strange 
indeed as they possess coexisting stable and unstable 
directions at once. This makes them take the form of a 
‘fractal’, a geometrical object with a ‘fractal dimension’ 
living in the in-between of two integer dimensions. 
Each attractor, strange or not,  has a basin of attraction 
where once inside it the system will eventually settle 
on the attractor. In the case of co-existing attractors  the 
boundaries between  them, most often than not, are 
fractals too. 

An important measure associated with an (strange) 
attractor’s (fractal) dimension is its information carrying 
capacity. Information, quantifying the element of 
surprise, serves as a degree of the attractors’ irregularity. 
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The realization of attractors serving as information rich 
carriers and their potential as information processors has 
been championed by J. S. Nicolis and A. Shaw since the 
late ‘70s and early 80’s [Nicolis G. & Basios 2015; West 
2013; Nicolis J.S. et al 1986; Nicolis J.S. et al 1983; Shaw, 
1981]. 

On elucidating the key role of the concept of 
information in biology, on the other hand, much has 
been achieved after the seminal question posed by E. 
Schroedinger “What is Life?” in his famous book which 
bears the same title. The  idea of living entities as lowering 
entropy structures “machines producing negentropy 
and order” was further aided by the classic work of C. 
Shannon on information transmission. 

Within these conceptual frameworks the junction 
of information, biology and dynamics was again 
ingeniously proposed by J.S. Nicolis [Nicolis, J.S. 1991; 
Nicolis G. & Basios, 2015]. He studied the role of chaos 
and noise in the dynamics of hierarchical systems by 
extending the work of C. Shannon. He incorporated 
dynamical notions in the study of information flow in 
biological information processors. This proposal of his 
created a lot of interest, at the time, albeit shadowed 
by the rapid development of the field. The pioneer 
neurophysiologist W.J. Freeman picked up the idea of 
J.S. Nicolis and identified the role of chaos in olfactory 
perception and the study of EEG  (Electro-Encephalo-
Gram) in a more general setting [W. J. Freeman, (2015); 
Freeman, 2013; Freeman et al., 2012; Freeman, 2001; 
Freeman, 2000]. Agnes Babloyanz, was also one of the 
first if not the first, that applied the techniques of  attractor 
reconstruction from EEGs time series and pointed 
the signature of chaos and its role in brain dynamics 
[Babloyanz,1986]. After that an avalanche of papers 
proposed and established more and more sophisticated 
tools stemming from nonlinear dynamics and by now 
this kind of investigation is a standard procedure. The 
role of chaos and fractals in structure, function and 
dynamics concerning biological tissues and organs  
took root form  then on. We know have diagnostic tools 
(notably for the heart and brain) based on these concepts. 

While these developments were taking place 
describing the phenomenological large scale level of 
the dynamics of biological information, on the other 
end microscopic models where proposed for neuronal 
systems. These models started from very elementary 
“integrate and fire” models with linear components and 
the more realistic they grew the more nonlinearities were 
incorporated; with the inevitable appearance of chaotic 
behaviours. A detail enumeration of these models in the 
field of computational neuroscience can be found, for 
example in [Izhikevich, 2004].

Interestingly this cross-fertilization between cognitive 
and computational neuroscience from the one side and 
dynamical system theory and chaos from the other, 
led not only to breakthroughs in how we think about 
biological information processing  but also to novel 
theoretical advances in dynamics. Among the most 
outstanding theoretical development was the discovery 
of the so called “blue sky catastrophe” a new type of 

bifurcation that would have passed undetected if it was 
not for the investigations of the underlying dynamics of 
neuron spike-train bursting  brought forth by the work 
of  A. Shilnikov, D. Turaev and co-workers [Shilnikov & 
Turaev, 2007; Shilnikov & Cymbalyuk, 2005; Wojcik et al 
(2011)]. 

Moreover the importance of nonlinear systems in 
understanding complex behaviour of biological rhythms 
has been recently advanced by an important conceptual 
and readily applicable breakthrough [Wojcik et al, 
2014] that straddles the gab between nonlinear systems’ 
modelling and data analysis/treatment. By studying 
qualitative changes in the structure of corresponding 
Poincare-type return maps, the authors of [Wojcik al 
(2014)] provide a systematic basis for understanding 
plausible biophysical mechanisms for the regulation of 
rhythmic patterns generated by various “central pattern 
generations” (CPG or “pacemakers”). They demonstrate 
this in the context of motor control (gait-switching 
in locomotion) and in addition their analysis is also 
very relevant beyond motor control. Their technique 
[Wojcik al, 2014] can easily be applied, also, to the case 
of information processing; and it might provide further 
understanding for the pacemakers’ role and their “time-
division-multiplexing-basis”, that we will encounter in 
Sect. 2.1,  in relation to “chaotic itinerancy” (see also Fig. 
2). 

And last but not least we have the phenomena of 
stochastic and chaotic resonance in neural networks in the 
brain [McDonnel & Stocks, 2009; Mori & Kai, 2002] and 
the immense work by H. Haken  and his collaborators 
[Haken, 1996; Haken, 2008] on self-organization and 
perception in brain dynamics that also cross-fertilize 
both fields of neuroscience and nonlinear dynamics.

Presently, modern concepts and tools from complexity 
help in bridging the gap between macroscopic and 
macroscopic mathematical modelling of biological 
processes. More specifically in the area of brain sciences, 
there is recently an intense activity and fast progress 
concerning mesoscopic models based on hierarchical 
networks, i.e clusters of neurons, extended neuronal 
networks and/or groups of  neurons ,  “networks of 
networks” as they are often called. Novel structures 
and concepts such as  “chimeras” appear in order 
to describe their complex dynamics. Dynamics that 
exhibit coexisting regimes of chaos and order, multiscale 
dynamics and cascades of bifurcations. Among the 
plethora of publications on the subject we refer to two 
recent ones [Hizanidis, et al 2016; Meunier et al, 2010] 
which provide key references therein 

As we have seen the role of chaos in biological 
information processing has been established as an  
important breakthrough of nonlinear dynamics, notably 
in neuroscience, spanning more than three decades.  
Subsequently, in this work we review and report novel 
results that reveal its underlying logical  structure. For our 
demonstration we use a minimal model for apprehension 
and judgement inspired from this breakthrough that we 
have related it to Bayesian updating.  This brings forth  the 
realization that a biological processor obeys essentially 
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an extended, non-Boolean, logic fully compatible with, 
the so called, “quantum-logic”. 

Metastable Chaos and Coexisting Attractors:  
revealing ambiguities 

Let us now revisit the subject of biological information 
processing and chaos by briefly considering its main 
ingredients and its fundamental aspects. Because in this 
work our focus is to illustrate the underlying logical 
structure using a model with the minimum essential 
considerations in an as much as possible generic setting. 
The construction presented here follows previous work of 
ours outlined in [Gunji et al 2016; Gunji et al 2017].  We 
start with the fact that any act of information processing in 
an organism involves two separate phases (Fig.1): 
(a) An  expanding, exploratory, phase where the biological 
processor probes its environment and information from 
the outer world manifests via a set of impinging stimuli to 
its sensory channels. This phase involves motor-sensory 
coordination. During this phase the dynamics of the 
whole process expand in the available phase space i.e. 
the sum of its Lyapunov exponents is strictly positive. 
The pre-existing or newly formed attractors therefore 
must be strange-chaotic attractors able to accommodate 
information. 
(b) A contracting, recollecting phase where the biological 
processor compresses information by contracting the 
basin of attraction toward one of the coexisting attractors. 
The raw stimuli thus are collected and represented in 
various pre-existing  or newly formed categories. So the 
dynamics at this phase have to exhibit a strictly negative 
sum of Lyapunov exponents.

In deed, the compression  in phase (b) results 
to ‘categorization’ and is characterized by a loss of 
information of the order of  log(N/D) bits, where N is 
the dimension of the phase space and D the correlation 
dimension of the specific attractor that represents the 
category which carries and/or stores the information 
coming from the stimulus-signal. It is worth mentioning 
that the two phases can either executed in succession 
and/or in parallel. In any way this recurrent activity via a 

nonlinear feed-back loop guarantees that observation and 
categorization occur in unison, Fig. 1,  [Nicolis J.S., 1991; 
Nicolis J.S., 1986; Tsuda & Fujii., 2004, Tsuda 2015].  
 
Coexisting Attractors and fractal basin boundaries
 
The whole process of creation and annihilation of 
attractors is best described as a “chaotic itinerancy” 
[Ikeda et al 1989, Kaneko & Tsuda, 2003; Tsuda, 2013,  
Grebogi et al 1987, Tsuda, 2001; Tsuda & Nicolis, 1999; 
Nicolis, J.S. & Tsuda, 1985]. Chaotic itinerancy describes 
dynamics  where on the course of the evolution, due 
to parameter change and other fluctuations, attractors 
appear and disappear and while their basin boundaries 
follow the change. Most importantly, and for our focus 
too, is the inevitable existence of fractal-basin boundaries 
in such a itinerant process. It is exactly this coexistence 
of attractors with fractal basin boundaries that makes 
the act of partitioning of the impinging stimuli into 
various categories to potentially become ambiguous. 
A signal can be perceived in two very different ways, 
depending on history and context, and as to which 
attractor it will finally relax will be determined by the 
particular multistability conditions at the time, Fig. 2. A 
paradigmatic example of such ambiguity in perception 
is the famous “Necker cube”, where the “outside” 
figure can  be apprehended “inside” in two ways, even 
oscillating between the two perceptions with no effort 
of deciding or judgement being performed aforehand.

Experimental Evidence

“Ambiguous figures can be found in any textbook 
about cognitive sciences and neuroscience.” This is how 
J. Kommeir and M. Bach put it in their review article,   
[Kornmeier & Bach, 2012]  a very informative review 
about “what happens in the brain when perception 
changes but not the stimulus” which deals with the 
history and current affairs on this paradigmatic “gateway 
to perception”. Related to the bistabilty of the ambiguous 
perception and the resulting dual apprehensions of the 
Necker cube, oscillatory patterns were discovered and 
analysed by novel wavelet techniques on multi-channel 
data [Runnova et al. 2016]. In general, the investigations 
report that it takes a time interval of the order of 50ms 
(two loops of the feedback) in the recurrent neural 
activity present for the disambiguation of the image and 
a minimum of 350ms for the conscious perception and 
decision of the perceived reversal. Also, T. F. Arecchi 
and co-workers report on the characteristic time lapse 
between apprehension and judgement with experiments 
performed on Necker-cube figures as  well as in literature 
and sound  interpretation texts, eye-fixation and saccadic 
movement [Arecchi 2015; Arecchi, 2011; Arecchi, 2007].
They report that short memory exhibits a characteristic 
time interval  of 2-3s, justifying the discreteness of the 
process. In this 2-3sec interval the whole cycle of stimulus, 
response apprehension, judgement and awareness of the 
decision considered [Arecchi, 2016]. Their results of course 
vary depending on conditions, subjects and experimental 

Figure 1. The Two Phases of Biological Processing: Biological 
processors observe, and collect information, by probing their 
environment and comprehend it, by categorizing it.
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settings. But what clearly emerges is that for each setting 
there is a specific, discrete and well defined time-interval 
governing the cognitive “decision making” processes 
during ambiguously perceived stimuli. 

According to their findings, the process of apprehension 
has a duration around 1sec, at the maximum; it appears 
in EEG signals synchronized in the “gamma band” 
(frequencies between 40 and 60 Hz) coming from distant 
cortical areas. The process of judgement has a duration of 
about 2sec, as a comparison between two apprehensions 
and their judgement takes place. This is in the “alpha-band” 
and necessarily involves short memory to facilitate the 
comparison. Let us quote from  [Arecchi, 2015] two examples 
that elucidate these two processes: “[apprehension:] a rabbit 
perceives a rustle behind a hedge and it runs away, without 
investigating whether it was a fox or just a blow of wind. 
… As Walter Freeman puts it the life of a brainy animal 
consists of the recursive use of this inferential procedure. …
[judgement:] On the contrary, to catch the meaning of the 
4-th verse of a poem, I must recover at least the 3-rd verse 
of that same poem, since I do not have a-priori algorithms 
to provide a satisfactory answer”.  The process in the first 
example, with the rabbit, is automatic as it is based on 
existing available algorithms (a priori categories). For the 
process of the second example, with the poem, there can 
be no a-priori algorithms, as they have to be generated and 
performed “on the fly” depending on the challenge at hand 
(a posteriori attractor generation via a dynamic itinerancy). 

Forward and Inverse Bayesian Inferences

F. T. Arecchi further described the interpretation and 
apprehension of the sensory stimuli on the basis 
of available algorithms, through a (forward) Bayes 
inference and the comparison and judgement through 
an ‘Inverse Bayes inference’. For the (forward) Bayesian 
inference, (see Fig 3(a)), the standard setting involves the 
interpretative, competing, hypothesis, call it  h, the sensory 
stimulus piece of data, d, the most plausible hypothesis, 
h*, which will eventually determine the reaction, and an 
a priori existing algorithm, P(d|h) which represents the 
conditional probability that a datum d is conforming with 
an hypothesis h. The conditional probabilities, P(d|h) 
are given e.g. have been learned during the past. They 
represent the equipment, or faculties, by which a cognitive 
agent faces and interprets its universe of discourse. So, this 
is a bottom up process,  information flows from the input 
in neurons to the group(s) of neuronal correlates.

Therefore, following [Arecchi, 2015] apprehension can 
be implemented by a forward Bayes inference (Fig. 3a) 
given by Bayes formula:

P(h*) = P(h|d) = P(d|h) P(h) / P(d)                               (1)

Where P(h) is the prior probability of hypothesis h, d is the 
data, P(d|h)  is the likelihood i.e. conditional probability 
that d results from h, P(d) is the evidence i.e. the probability 

Figure 2. Chaos and Biological Information Processing. Adapted from [Nicolis J.S. & Tsuda, 1999]. “Outside” sends stimuli 
that can have more than one representations “Inside”. Categorization is possible due to coexisting attractors driven by a 
pacemaker in a “time-division-multiplexing-basis”. The whole process can be modelled as one of driven chaotic itinerancy. It 
can be implemented by very simple hardware giving rise to extremely complex software.
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that we observe the data d, and P(h*) = P(h|d) is the posterior 
conditional probability that Bayes theorem enables us to 
compute. The updating of P(h*) constitutes the basis of the 
Bayesian inference. The process is algorithmic, well posed 
and with a wide array of applications that become more 
and more numerous these days. 

The inverse Bayesian inference, Fig. 3b, is based on the 
converse of Bayes Theorem  or the so called “inverse Bayes’ 
formulae” [Arecchi, 2015; Ng, 2014, Ng & Tong, 2011; Tan 
et al, 2009]. We can state it, briefly, as determining the 
prior P(h) from which an observed posterior probability 
distribution P(h*) has resulted, given the likelihood  
P(d|h) of the data d. Of course, one can only start with a 
desired posterior as long as it’s logically compatible with 
the likelihood. So the converse Bayes’ Theorem is not 
automatically fulfilled by merely “solving for P(h)” Bayes’ 
formula above. Logical compatibility, consideration of 
convergence issues in a correctly chosen functional space 
and other subtleties are crucial. So the Inverse Bayesian 
inference is not guaranteed to mechanically converge or 
to have a unique solution. The Inverse Bayes Formulae 
do not yield automatically an algorithmic process for its 
solution. Based more on trial and error and ‘on the fly’ 
construction of step-by-step solutions the process can be 
characterized as non-computable, in the normal sense of 
the word. (See Fig. 3 for an illustration of the two Bayesian 
Inference processes). 

Indeed is in accord with the nature of judgement as a 
“top-down” process since judgement involves comparison 
between (at least) two previous apprehensions, coded in a 
given language and recalled by memory. For example, as 
in [Arecchi, 2015; Arecchi, 2016], two successive pieces of 
the text can be compared and the conformity of the second 
one with respect to the first one can be determined. This 

is very different from apprehension, where there is no 
problem of conformity but of plausibility of h* in view 
of a motor reaction. As the non-mechanical and non-
algorithmic nature of the construction of a judgement 
can be achieved by means of an inverse Bayes procedure 
[Arecchi, 2015; Gunji et al 2016, Gunji et al 2017], the 
observation that judgement entails “non-algorithmic 
jumps” is compatible as far as the inverse Bayesian 
inference process has to generate an ad hoc algorithm, 
build on the spot, data and context dependent,  and by no 
means given beforehand.

Based on the above realization of the discreteness of 
the process Arrechi has conjectured for it a quantum-
like character that yields a quantum-like constant. The  
“decoherence” or de-correlation time is compatible 
with the short term memory windows given by the 
experiments on linguistic understanding [Gabora 
& Aerts, 2002; Pothos & Busemeyer, 2009; Pothos & 
Busemeyer, 2013, Busemeyer & Bruza, 2012; Aerts & 
Aerts, 1995]. In He considered a “K-test” [Arecchi, 2015], 
as the time equivalent of Bell inequalities, and presented 
evidence as a case of pseudo-violation of the Leggett-Garg 
inequality [Arecchi et al, 2012]. Interestingly enough this 
is in accordance with the newest results from the field 
of “Quantum Cognition” where a quantum probability 
(following Von Neumann’s axioms) rather than the 
classic one (following Kolmogorov’s axioms) serve as the 
framework of understanding cognitive processes [Aerts & 
Sassoli de Biachi, 2015, I&II;  Aerts, 2009; Aerts, et al, 2013; 
Aerts & Sozzo, 2011, Khrennikov, 2010; Khrennikov, 2007; 
Haven & Khrennikov, 2016; Gunji et al 2016; Gunji et al 
2017]. 

Figure 3. The Two Kinds of Inference due to Bayes. A schematic illustration of the two Bayesian inference processes: (a) the 
(Forward) Bayes’ Inference based on Bayes’ Theorem; a celebrated and standard hypothesis testing ‘toolbox’. (b) The Inverse 
Bayes Inference process based on the Converse Bayes’ Theorem; where, from a given posterior probability distribution and the 
likelihood, compatible prior probability distributions and their degree of plausibility can be ‘guessed’. 
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A Minimal Model

Biological Information Dynamics in the face of 
ambiguities

As mentioned above the chaotic dynamics in biological 
processing consist of two phases: The phase (a) which is 
an exploration phase, characterized by expansion of the 
phase-space, with a positive sum of Lyapunov exponents, 
generating information and the phase (b) which is a 
categorization phase,  characterized by contraction of the 
phase-space, with a negative sum of Lyapunov exponents, 
compressing and storing information. The whole process 
is that of a “chaotic itinerancy”, which means that attractors 
are created, modified and annihilated during both phases.
Therefore a minimal model for the biological information 
dynamics must incorporate a scheme for phases (a) and 
(b) that captures the essentials of both: 
(a) For the expanding phase in order to describe the 
necessary coarse-graining of the sub-set of impinging 
stimuli that are captured by the organism’s sensors. We 
utilize a “Rough Set” approximation [Polkowski, 2002; 
Doherty et al, 2006]  for the basin boundaries, Fig. 4. This 
way the volume of the phase space expands due to this 
coarsening  and the plausible set of a priori probability 
distributions manifest augmented in number.  
(b) For the contracting phase we employ an inhibitory 
network, modelling  this way the compression of 
information required for categorization. The network 
can be a recursive network of the “restricted Botlzman 
machine” variety, famous for their dimensionality 
reduction capabilites and their utility in constructing 
“deep belief networks” [Hinton & Salakhutdinov, 2006; 
Hinton, 2009] based on the particulars of the rough set 
approximation. They  are acting on the representations 
of the outside objects in the cognitive space ‘within’. The 
inhibitory network represents the coexisting cognitive 
attractors in their role as compressors of information 
[Gunji et al 2017]. 

The whole construction has been studied in detail, 
within its’ formal mathematical framework, in [Gunji 
et al, 2016; Gunji et al 2017]. Here we follow this work 
and review it in a comprehensive way. Therefore, as we 
will not go into the details of the mathematical concepts 
involved, we have to refer the interested reader to related 
citations.

Once a subset of stimuli has been captured we have a 
“universe of discourse” for the ‘outside’. Considering a set 
A to be the 'outside' consisting of objects, and let B be the 
'inside' consisting of representations, and (minimally) two 
maps f,g :A→B to be a cognitive process relating outside 
objects to inside representations. We call x the object 
and we call f(x), g(x), its representations. An equivalence 
relation R on A is derived by a map, defined by xRy for 
x, yϵA such that f(x)=f(y) or  g(x)=g(y)  for that matter). It 
results in the 'outside' set of objects partitioned into a set of 
equivalence class such that

 [x]R = {yϵA | xRy}.   (2)

Three elements are essential elements for the construction 
of these maps: a way to choose a representative of a set 
of stimuli, a symmetry rule to deal with similarities and a 
locality principle for handing dissimilarities.

Let us give an example from [Gunji et al 2016]: Imagine 
that the 'outside' consists of a three cats one tabby, one 
white, and one black and two dogs, one white and the 
other black. The three cats as objects are mapped to their 
representative class CAT, (as a concept. The two dogs are 
mapped to their representative class DOG as a concept. 
This results in two equivalence classes, namely: {tabby cat, 
black cat, white cat} and {white dog, black dog}. Due to the 
axiom of choice [Lawvere & Rosebrugh, 2003; Lawvere, 
1969] one can choose a tabby cat as a representative for 
the class CAT and a white dog as a representative for the 
class DOG. The symmetry law in the inhibitory network, 
for our example, implies that if an individual cat is not 
like a dog, an individual dog is not like a cat. Locality law 
implies that dissimilarity does not expand unnecessarily. 
So, if the case arises where a black cat is misclassified as a 
dog (due to poor vision, ambiguity, error, noise etc) it can 
only be taken to look like a black dog (evidently a very 
small black dog!).

More concretely: A sub-set of the outside world 
constitutes the “universe of discourse”.  As the capture 
of the stimuli and their representations are subject to 
perturbations, noise, ambiguities and in general  lack 
of complete knowledge for their characterization, we 
propose a “rough set” approximation [Pawlak, 1981; 
Pawlak, 1982] as the plausible minimal cognitive model, 
which will engulf these disturbances. Rough set theory and 
applications have been developed within soft-computing 
exactly with the aim to allow for ambiguous decisions 
along with other similar techniques such as “fuzzy set 
theory” [Zimmermann, 1992], from where it stemmed, 
which generalize the idea of set membership. This kind of 
ideas have been employed to the study of cognition with 
respect to discretized notions such as concepts, events 
and action selection. A rough set is an approximation 
of a normal (crisp) set and it can either contain or be 

Figure 4. Rough Set Approximation. A rough set approximation, 
R, consists of its upper (R*) and lower (R*) parts. The inside of the 
red line defines an ‘Upper (R*) Rough Set Approximation’ of the 
set X, here shown with blue. The inside of the green line defines 
a ‘Lower (R*) Rough Set approximation’ of the same set X, hence 
the term ‘sandwiching’ i.e. R:  R*⊂ X ⊂ R*  
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contained  by the original set. The intersection of an upper 
and a lower rough set approximation of a set,  in a sense, 
sandwiches the original set and by blurring its boundaries 
allows ambiguity to be handled, see Fig 4.   
 i) Firstly, they must establish a correspondence between 
the inside and outside  a a representative concept. For this 
it is necessary we follow the “Axiom of Choice”, which 
states that for any set there exists a “choice function” 
allowing for a representative of the set to be chosen.   Due 
to the axiom of choice one can choose one representative 
s for each equivalence class [x]R , i.e. [x]R = {yϵA | xRy} as in 
eq.(2).
ii)  Secondly, they have to observe a “Symmetry Law”, Fig. 
5. between themselves. Formally this is a property of the 
maps being equivalent classes. So, for their relations holds 
that: if elements ”a”  and “b”  are in a relation “~”, then b 
is in a relation “~” with “a” too. Formally:  (a~b) iff (b ~ a). 
iii)  Thirdly, the maps must obey a “Locality Rule”, Fig. 5, 
that is if two elements (a,b) are mapped coming from an 
element c and one of them, say b, is also mapped from an 
element d which happens to be a ‘neighbour of c’, then d 
must be mapped to a too. Formally:  If (c→ a and c→b and 
d→b) and (d neighbour of c), then d→ a. 

Choosing the maps in this way we obviously 
establish a one-to-one correspondence between the 
'inside' and 'outside' if one neglects objects but not their 
representatives, Fig. 6. The outside is, however, not trivial 
a priori. Objects are gradually and empirically identified 
as such a posteriori, this suggests that is difficult for us to 
map objects to representations easily. We have explored 

the formal framework of such considerations in [Gunji 
et al 2016, Gunji et al 2017]. In last analysis an a priori 
probability is itself an attractor as in determining an a priori 
probability much action, trial and error and a converging 
process is necessary [Nicolis & Tsuda, 1999; Gunji, 1997]. 
We will return on this issue latter, in Sec. 5, as we examine 
the, so called, "inverse Bayesian inference".

Closing the loop: ambiguous representation implemented 
by two maps

In the simplest case of a bistable ambiguity in 
representation, recall the Necker cube, see also Fig. 2, we 
have weakening of the axiom of choice of a representative 
as it cannot be chosen in a unique way. This ambiguous 
choice can be defined by the action of two maps, which 
correspond to the basic, minimal, set of two coexisting 
attractors. Let the maps be f and g and the equivalence 
relations derived from f and g be R and K, respectively. 
Since a cognitive process g conflicts f for some (not all) 
xϵA (i.e. f(x)≠g(x)), the definition of g has to be considered 
under a particular condition of an inhibition equipped 
with a symmetry and a locality law in order to allow 
for similarities and contain dissimilarities, as mentioned 
above. These laws are outlined in detail in Sec. 3.2 of 
[Gunji et al, 2016]. 

Let the elements of f(A) to be b1, b2, …, bn (representation 
with respect to f). A representation (an element of f(A)) 
derives an equivalence class (a subset of A) which has no 
intersection with each other, therefore it is  a partition. We 
here denote a partition derived by bk with respect to f as 
bk

f = {x ⊆ A | f(x)=bk}. Similarly an equivalence class with 
respect to g:A→ f(A) is denoted by bk

g. Example of such 
partitioning and the action of symmetry and locality rules 
in the construction of the inhibitory network’s  nodes and 
edges are illustrated in Fig. 5 and detailed in [Gunji et al, 
2016, Gunji et al, 2017]. 

The secondary map g, which is defined in accordance 
to the directed inhibitory network, allows the relation 
between equivalence classes (i.e. partitions with respect 
to f and g respectively) to be rearranged in a particular 
matrix which consists of various diagonal matrices, Fig. 
5 and Fig. 6. The algorithm is a straight forward row-
column rearrangement and this way the construction is 
completed by the representation of the partitions of the 
inhibitory network as a adjacency-type of matrix as shown 
in Fig. 5 bottom right. The matrix is simply constructed as 
follows: Take an element of a matrix at a column bj and a 
row bi. If there is a link between bi and bj, in the inhibitory 
network, then a component at (bi, bj) is zero (0, white box 
in the figure), and otherwise it is one (1, black box in the 
picture). This matrix is symmetric matrix with diagonal 
elements equal to 1 and the off-diagonal entries are either 
0’s or 1’s depending on the network.

Phases (a) and (b) constitute a closed loop of repeated 
operations in a nonlinearly recursive fashion [Nicolis & 
Tsuda, 1999]. So for completing the process we need to  
collect the fixed points of the matrix, closing the loop, by 
repeated applications of a nonlinear recurrence which will 
lead to a temporary but stable perception of the outside. 

Figure 5. Network Rules. An illustrative example of the 
construction of a directed inhibitory network. Two partitions of 
a set of the representatives, here {bi}(i=1…5) assumed that are 
coming from the same stimulus,  form a binary relation. Initially 
one vertex is chosen randomly and edges whose source is a chosen 
vertex are also randomly chosen (top left). By using the symmetry 
(top right) and locality rules (middle left) a local network is 
obtained (middle right). Successively applying the procedure for 
all elements leads to a directed inhibitory network (left bottom) 
which then can be expressed in a block-diagonal matrix form 
(right bottom).
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Rough set approximation is crucial in achieving this 
task. The main idea can be summarized as follows: 
the two partitions of the set {b} of representatives, {bf}, 
{bg} (dropping the subscript indexes for shorthand) are 
induced by an equivalence (class) relation  each, say R 
for f: {bf}  and K for g: {bg}; both derived, of course, by the 
inhibitory network. Both R and K can be approximated 
by their upper (denoted as R* and K*, respectively) and 
lower (R* and K*) rough sets. It is instrumental to keep 
in mind that if an equivalence class is compared to a 
neighbourhood in topology, upper approximation is 
analogous to closure where the lower approximation is 
analogous to the set of the interior points in topology. So, 
a set is effectively sandwiched in-between its’ lower and 
upper approximation, Fig. 4, analogous to the ‘coarse 
graining’ techniques familiar from nonlinear dynamics 
[Basios & MacKernann, 2011].

Now we can investigate the fixed points of all possible 
compositions related to the closed-loop recurrence. 
To start, we consider the four kinds of elementary 
compositions, R*K*, R*K*, R*K

* and R*K*. Now we can ask 
whether a partition is allowed as a fixed point. For the case 
of R*K* it turns out that  R*K*(b1

f )  = A. The whole set! This 
implies that a partition b1

f is not a fixed point with respect 
to R*K*. Next we consider the case, R*K*. As it turns out, 
R*K*(b1

f) = ø. The empty set! Therefore it follows that b1
f is 

not a fixed point with respect to R*K*. But for the cases of  
R*K

* and R*K* composition, it turns out that R*K
*(b1) =b1

f. 
As this verification can be generalized to any number of 
partitions we can say that any partition with respect to f 
can be a fixed point X for the equation, and similarly for 
R*K*

 R*K
*(X) =X and R*K*(X) = X    

The same holds for all four basic combinations of 
compositions:  

R*K
*(X) =X, R*K*(X) =X, K*R

*(X) =X and K*R*(X) =X  (3)

Moreover, we observed that since the collection of fixed 
points {X}, with X being a subset of A, are ordered by 
inclusion each defines a lattice [Davey, & Priestley, 2002; 
Birkhoff, 1967; Svozil, 1993; Svozil, 1998] whose partial order 
is defined by inclusion, formally written as  (<L, Í >) and that 
all lattices defined by any collection of fixed points for the 
elementary compositions are isomorphic to one another. 
Lattices are mathematical structures,   partially ordered 
sets, that serve as the basis for logic [Birkhoff, 1967; Davey 
& Priestley, 2002, Kalbach; 1983, Gunji et al 2009; Gunji & 
Haruna, 2010; Svozil, 1998]. We shall return to this remark 
in Sec. 6 where we estimate the logic of a universe of 
discourse that includes ambiguous representations.

Nonlinear Biological Information processing as 
Bayesian Inferences

Now we are able to show that our work is consistent 
with a quantum-like theoretical conjecture proposed 
by Arecchi and discussed in Section 2. As mentioned 

before, decision to an external stimulus could result from 
a choice of a neural group which can give rise to largest 
synchronized and distributed domains of correlates. 
Such a process of apprehension can be implemented by 
(forward) Bayes inference as proposed by Arecchi, eq. 
(1). Bayesian inference is often compared to a process 
of climbing a mountain within a landscape of coded 
data searching by using only local information, P(h*) 
provides the next plausible climbing step obtained from 
the previous step, P(h), provided  by the data from an 
external stimulus, P(d), and especially of the external 
stimulus received at the position of the previous step, 
P(d|h). If an isolated unique stimulus is given, the 
process of data apprehension occurs.

When two successive stimuli are given within a 
specified short term, the first apprehension stored is 
retrieved and is compared to the second one. Thus it 
can give rise to the process of judgement. If this process 
is also to be compared to the climbing of a mountain 
within a landscape of coded data, the mountain would 
contain multiple peaks which prohibits a climber only 
with local view to climb to the globally highest peak. 
Globally optimum solution cannot be obtained only via 
a logical computation based on Boolean logic but by a 
‘non-logical’ jump. According to [Arecchi, 2015], the non-
logical jumps appearing in cognition provide evidence 
for quantum-like effects, and this is implemented by an 
inverse Bayes inference. From equation (1), the inverse 
Bayes inference is expressed, formally, as 

 P(d|h) = P(d) P(h*) /P(h).                                 (4)     

Where now the data (d) and a posteriori hypothesis (h*) 
represent the current stimulus and the previous one, 
respectively. The most suitable algorithm, P(d|h) that 
best matches d and h* is obtained by an inverse Bayes 
inference. Observing the restrictions of convergence 
issues, compatibility with the likelihood etc  as required 
by  the converse Bayes’ Theorem and since the inverse 
Bayes inference contains non-algorithmic jump, P(d|h) 
is not a simple modification of the formula from eq.(4) 
but an equation obtained from a modification of the 
hypothesis, P(h). Therefore, P(d|h) cannot be obtained 
by simple iterations of recursive process, hence its non-
algorithmic nature.

Inverse Bayes inference proposed by [Arecchi, 
2015] can be compared to our cognitive model based 
on ambiguous representation. First we replace terms 
in Bayes inference by our data and approximations. 
Because a given set of data d in Bayes inference can 
be replaced with a given subset X in a universal set A, 
and because its lower and upper approximations for X 
have the following order, i.e. they are sandwiching the 
subset X: R*(X) ⊆ X ⊆  R*(X), data coupled with a priori 
hypothesis such as P(d|h) can be replaced by the upper 
approximation, R*(X), and data coupled with a posteriori 
hypothesis such as P(h|d) = P(h*) can be replaced by the 
lower approximation, R*(X). Since any element in the 
lower approximation is in X, and only some elements 
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in the upper approximation are elements of X, the lower 
and upper approximation correspond to the sufficient 
and necessary conditions, respectively. That is why the 
upper and lower approximation could be considered to 
correspond to the a priori and a posteriori hypotheses, 
respectively.

How is the (forward) Bayesian inference implemented 
in our ambiguous representation? In eq. (4), h is replaced 
by equivalence relation, R derived by a particular 
representation (map), P(d|h) is replaced by R*(X), and 
P(h|d) = P(h*) is replaced by R*(X). Therefore, Bayesian 
inference is the process of computing R*(X) from R*(X) 
(i.e. from a priori to a posteriori). So as to achieve this 
computation data, X, is implemented by a particular 
form because R* is used instead of an equivalence class, 
[x]R. 

Similarly, the inverse Bayes inference is the process 
of computing R*(X) from R*(X)  i.e. from a posteriori 
to a priori [Ng, 2014]. However, in order to do that we 
need an extra equivalence relation, K, with a particular 
relation between equivalence classes with respect to 
K and R, including a condition for its lower rough set 
approximation, such that K*(Y) = [x]K  where R*([x]K) = Y, 
making possible that we get a fixed point, Y,  under R* 
and K* , formally expressed as R*(Y) =R*(K*(Y))=Y  which 
would have not exist for the action of  R* alone.

This is exactly the condition which is satisfied by 
our pair of equivalence relations derived by the pair of 
maps, f and g under a constraint of an inhibitory network 
equipped with symmetry and locality.  It is crucial in 
comparing our model to that of Arecchi’s that a collection 
of fixed points is naturally introduced for  both R and K in 
order that the combined action of their upper and lower 
rough set approximations will take care of convergence 
issues [Gunji et al, 2017]. This way one can have well 
defined prior and posterior probability distributions 
participating in the Bayesian Inference either forward or 
inverse. 

Compared to the inverse Bayesian inference, to 
compute an a priori hypothesis R*(Y), a non-algorithmic 
jump related to quantum-like effects corresponds 
to replacing a relation R by another relation K. This 
amounts to the modification of the original hypothesis. 
Which is a jump clearly “non-algorithmic” (or better, 
non-mechanical) and non-boolean in terms of logic, 
reminiscent of the quantum-like postulate of Arecchi 
and the (non-Boolean) quantum logic implemented in 
the area of “Quantum Cognition” [Aerts et al, 2013; Aerts 
& Sassoli de Biachi, 2015;  Pothos & Busemeyer, 2009, 
Busemeyer, & Bruza, 2012; ].

The Logic of Ambiguous  Representations

The inverse Bayesian inference can be implemented by 
equation which contains a non-Boolean logical jump 
such as the modification of the original hypothesis (i.e. 
a novel equivalence relation) from R to K. The matrix 
representation of the inhibitory network (Fig. 5, Fig. 6) 
allows for the classification of the lattice where the logic 
of the whole process is based, Fig. 7. As we have proved 

in [Gunji et al 2016, Gunji et al 2017]  a lattice resulting 
from a collection of fixed points satisfying R*(K*(Y))=Y 
is an “orthomodular” lattice [Davey & Priestley, 
2002]. Orthomodular lattices are the ones underlying 
quantum logic [Birkhoff & Von Neumann, 1975; Piron, 
1976; Svozil, 1998; Engesser et al, 2009] and constitute 
a generalization of the Boolean lattice where Boolean 
(classical) algebras are based. As a representation follows 
rules of composition and other operations. The logic of a 
representation captures essential properties of both set 
operations and logic operations. The most familiar of all 
logical structures is the Boolean logic, a mathematical 
structure widely known from computer operations. 
The idea that the propositions of a logic are based on 
a “lattice structure”, signifying a partial order of their 
sets, was first introduced with the works of Boole and 
Pierce, “seeking an algebraic formalization of logical 
thought processes”, already in the mid 19th century. A 
lattice is a partially ordered set closed with respect to 
meet and join operations of two elements, where the 
join of two elements is the least element which is larger 
than both of two elements and the meet of two elements 
is the greatest element which is smaller than both of 
two elements [Birkhoff, 1967; Davey & Priestley, 2002; 
Kalbach, G. (1983)]. 

The lattices of the a collection of the fixed points 
of the representation discussed above are ordered by 
inclusion. The meet here is defined by intersection, and 
the join is defined by union. In other words, any of the 
concepts in a set lattice can be constructed for all possible 
combinations of atom-concepts which are partitions 
of  the representations. We note that the set lattice or a 
Boolean algebra is represented simply by a diagonal 
matrix between partitions.

Orthomodular Lattices & Quantum-Cognition

Hasse diagrams help us visualize partially ordered 
sets, such as lattices, and easily identify the kind 
of logic that are based on [Davey & Priestley, 2002; 
Engesser et al., (2009)]. A Boolean lattice coming from 
the diagonal matrix between is  symmetric without 

Figure 6.  Network Construction From the Two Partitions of the 
Set of Representatives. Inhibitory network constructed from a set 
of objects, A (stimuli).  A pair of maps, f and g, induce the two 
partitions, f(A) and g(A) respectively, for the set of representations  
{bi}(i=1…5) of A. Each is on its own rough set approximations, 
R = (R*, R*) for f and K  = (K*, K*) for g. Given the initial map 
f:A→B, the other map g is accordingly determined so as to satisfy 
the same rules of the directed inhibitory network.
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loops. An orthomodular lattice, like the ones in 
quantum logic, is defined by an almost disjoint union 
of Boolean algebras.  Especially  if it contains no loop, 
it is an orthocomplemented lattice (Boolean algebras 
being a special case of orthocomplemented lattices). It 
shows that LD is an orthomodular lattice, and it is also 
an orthocomplemented lattice. The matrices that come 
from the partitions of the sets of the representatives, 
{bf} and {bg} above, are symmetric with all their 
diagonal elements equal to 1 and off-diagonal elements 
arranged in symmetric sub-matrices (see Fig. 7).

This implies that they have resulted based on 
an (orthocomplemented) but most importantly an 
orthomodular lattices and therefore have non-Boolean 
(quantum) logics as their bases. Example of Hasse 
diagrams coming from our scheme outlined above 
and detailed in [Gunji et al 2016; Gunji et al 2017] are 
shown in Fig. 7. 

The left panel of Fig. 7 shows a lattice derived 
from a 6-by-6matrix. Since a matrix consists of two 
diagonal blocks, a lattice is a quasi-disjoint union of 
two Boolean algebras. Each diagonal matrix contains 
three diagonal elements, and that shows a 23-Boolean 
algebra. Each element of a lattice is represented by a 
circle in Hasse diagram as shown. If X⊆Y, an element 
X is located below an element Y, and if there is no 
element between X and Y, two elements are linked 
by a line. Each lattice consisting of eight elements 
represents 23-Boolean algebra. The greatest, (X=A) in 
the top, and the least element (X=ø) in the bottom of 
the diagram are common to both of the two 23-Boolean 
algebras.  The lattices corresponding to the matrix in 
the insets above  the panels of Fig. 7 are represented by 
their Hasse diagrams found bellow. This kind of Hasse 
diagram implies that the lattice is orthocomplemented 
and orthomodular. 

Similarly, the right panel of Fig. 7 shows a Hasse 
diagram of a lattice corresponding to a larger matrix, 
which means a construction with a bigger population of 
representatives in the partitions. Since a matrix consists 
of a diagonal matrix containing six elements, two 
diagonal matrices with five elements or two elements, a 
lattice consists of one 26-Boolean algebras, two 25-Boolean 
algebras and two 22-Boolean algebras. Broken lines are 
used to indicate that the greatest (A) and least elements 
(ø) represented by circles are common to all block lattices, 
yet they are not used to indicate inclusion relation or 
order. Once again, the above testifies that the lattice at 
hand is an orthomodular (and orthocomplemented) 
lattice.

According to the theory of quantum logic  [Birkhoff 
& Von Neumann 1969], the closed subspace of a Hilbert 
space formulation of quantum mechanics forms an 
orthomodular lattice. As they put it, they are "formally 
indistinguishable from the calculus of linear subspaces 
(of a Hilbert space) with respect to set products, linear 
sums and orthogonal complements" corresponding to 
the operations “and”, “or” and “not” in Boolean lattices. 
An orthomodular lattice is of crucial importance to 
quantum logic [Kalbach, 1983; Svozil, 1993; Svozil, 1998]. 
After this realization quantum logic became a core issue 
in physics and mathematics but after the seminal work 
of Aerts and co-workers, since the early `90s, it became 
an very important and widely discussed theme of 
investigation in the realm of human cognition.   Recently 
theoretical and experimental advances in the area of 
quantum cognition and decision making highlight more 
and more the quantum-like nature of conceptualization. 
Amassing results from a wide array of disciplines, as 
from cognitive mathematical psychology [Pothos & 
Busemeyer, 2013], operational research and 'rational 
decision theory' [Pothos & Busemeyer, 2013], finance 

Figure 7. The logical structure for the sets of fixed points demonstrated by Hasse Diagrams.  Left panel: two diagrams connected 
by the symbol “+” show two Boolean algebras obtained from two blocks from the matrix (shown in the inlet above it). The whole 
matrix is an ‘almost disjoint union’ of the two Boolean algebras, where the least (the empty set) and the greatest (the whole set 
X) elements are common to both Boolean algebras. Right panel: Hasse diagram of a lattice obtained from a matrix shown in 
Figure 6 above. A matrix consists of five off-diagonal blocks. The whole diagram corresponding to this matrix (shown in the 
inlet above it) is an almost disjoint union of five Boolean algebras. The Hasse sub-diagrams of each Boolean algebra correspond 
to each block in the given matrix. Here only the least (the empty set) and the greatest (the whole set X) elements common to 
both Boolean algebras are represented by circles.
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[Segal & Segal, 1998; Baaquie, 2004], experimental and 
theoretical artificial intelligence [Aerts &Czachor, 2004; 
Gabora & Aerts, 2002] and many other fields [Khrennikov, 
2010], quantum probability's logical structure and 
quantum-like behaviour in cognition and/or concept 
correspondence  have been developed in several 
publications by a considerable community of authors 
[Busemeyer & Bruza, 2012]. We would like to just briefly 
mention that it came as a pleasant surprise to us that the 
key ideas on the role of chaos in biological information 
processing and especially of “chaotic itinerancy” 
discussed above, the “non-algorithmic” jumps in inverse 
Bayesian inference and quantum logic share a common 
denominator when ambiguous representations are seen 
in a detailed and formal manner.

Conclusions 

In this work we revisited the role of chaos in biological 
information processing and we focused on the presence 
of ambiguous stimuli and what their perception entails. 
Recent results and experimental evidence in favour of 
the importance of the phenomenon were also briefly 
reviewed. We reformulated the (forward and inverse)  
Bayesian inference argument about apprehension and 
judgement in terms of a rough set approximation. We 
did this by utilizing an inhibitory network, mimicking 
the expanding and contracting dynamics which is a 
central premise for  chaotic dynamics as applied in 
biological information processing. In the course of our 
investigation we found that the underlying logic is a 
non-Boolean, essentially quantum, logic. Our exposition 
summarizes these results based on our previous detailed 
formal exposition where all the mathematical details are 
available. 

The main conclusion is that by bringing together 
these three seemingly independent ways of thinking 
(dynamical, Bayesian and set-theoretic) about the 
ubiquitously present perception of ambiguous concepts, 
images or stimuli in general, reveals that biological 
information processing and its dynamics is still a 
promising and a highly non-trivial affair. We believe 
that a very fertile ground still lies in front of such 
investigations, rich in important realizations about 
the nature of perception and open to many possible 
applications. 
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