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Abstract.  We revisit the Wendling-Chauvel neural mass model by reducing it to eight ODEs and adding a dierential 
equation that accounts for a dynamic evolution of the slow inhibitory synaptic gain. This allows to generate dynamic 
transitions in the resulting nine-dimensional model. The output of the extended model can be related to EEG patterns 
observed during epileptic seizure, in particular isolated pre-ictal spikes and low-voltage fast oscillations at seizure 
onset. We analyse the extended model using basic tools from slow-fast dynamical systems theory and relate the main 
transitions towards seizure states to torus canards, a type of solutions that has been shown to explain the spiking to 
bursting transition in many neural models. We nd that the original ten-dimensional Wendling-Chauvel model can be 
reduced to eight dimensions, two variables being scaled versions of two other variables of the model. We then obtain 
a model with four PSP blocks, which is consistent with the block-diagrams typically presented to describe this model. 
Instead of varying the slow inhibitory synaptic gain parameter B quasi-statically, or just performing numerical bifurcation 
analysis in B as the structure of the fast subsystem of an hypothetical extended system, we construct a true slow dynamics 
for B, depending sensitively on the main PSP output of the model, Y0. Near fold bifurcation of limit cycles of the original 
model, the solution to the extended model performs fast low-amplitude oscillations close to both attracting and repelling 
branches of limit cycles, which is the signature of a torus canard phenomenon.
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Background

Neural Mass Models

Neural-mass models were initiated by Freeman (Free-
man, 1972, 1975) and Lopes da Silva (Lopes Da Silva 
et al, 1974). These are population models with lumped 
parameters, aimed at capturing the dynamics of EEG 
recordings. Jansen and Rit (Jansen and Rit, 1995) have 
considered the coupling of two neural-mass models, cor-
responding to two neuronal populations, namely, pyra-
midal cells and interneurons. Their model aimed at cap-
turing the transition to pathological EEG signals in the 
case of certain cases of epileptic seizure, in particular in 
temporal lobe epilepsy. Later on, Wendling and Chauvel 
(Wendling et al, 2002) extended the Jansen-Rit model to 
account for one more inhibitory population, having both 
\fast (somatic) inhibition" (FSI) and \slow (dendritic) 
inhibition" (SDI). This extension is based on experimen-
tal evidences and supposedly captures more features 
of the transition to seizure than the Jansen-Rit model, 
namely, small-amplitude fast oscillations at onset. In the 
present paper, we reduce the Wendling-Chauvel model 
to its minimal conguration, that is with eight state vari-
ables, and allow a key parameter, related to SDI, to vary 
slowly. In this way, we can reproduce time series from 
(Wendling et al, 2002; Wendling and Chauvel, 2008) cor-
responding to the dynamical transition to seizure via 
pre-ictal spikes and low-voltage fast oscillations. By do-
ing so, we propose a mechanism that underpins these 
complex oscillations, based on the multiple timescales 
present in the model and related to the canard phenome-

non (Krupa and Szmolyan, 2001), well known to capture 
rapid changes between vastly dierent regimes of neural 
activity (Ermentrout and Wechselberger, 2009; Kramer 
et al, 2008; Krupa et al, 2008). This approach relies on 
analysing the bifurcation structure of the so-called fast 
subsystem, obtained when the slow variable's dynam-
ics is frozen. That variable hence becomes a parameter 
that can then be varied statically to uncover an under-
lying bifurcation structure. In our case, the fast subsys-
tem is the Wendling-Chauvel model and the parameter 
in question is the slow inhibitory synaptic gain. In the 
full model, one observes a dynamic transition through 
the fast subsystem's bifurcation structure, and such dy-
namic bifurcations are accompanied by "delayed" transi-
tions that correspond to canard segments; see Section 4. 
Before presenting our extended model and analysing its 
slow-fast dynamics, we will rst review the main aspects 
of bifurcation analysis applied to epilepsy models.

Bifurcation Analysis and beyond

Bifurcation theory is an important mathematical tool to 
analyse the long-term behaviour of dynamical systems de-
pending on one or several parameters. It provides a skel-
eton of models in terms of parameter dependence and, in 
particular, characterises qualitative changes in the form 
and associated dynamical regime of solutions that a sys-
tem admits, such changes being referred to as bifurcations. 
For instance, one will often look for transitions from rest to 
periodic states (Hopf bifurcations) and for the possible ap-
pearance of additional frequencies in oscillatory solutions 
(period-doubling bifurcations, torus bifurcations).
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An important feature of neuronal dynamics is that of be-
ing excitable and associated bifurcation scenarios gen-
erating excitability are important to characterise using 
bifurcation theory (e.g. subcritical Hopf bifurcation) ; see 
(Breakspear et al, 2006) for an example in the context of 
epilepsy. Changes of solution type, upon parameter varia-
tion, can also be observed when systems are operating 
close to instabilities (Milton et al, 2004; Zetterberg et al, 
1978), that is, in a parameter regime close to, but not at, a 
bifurcation point. The idea that a disease such as epilepsy 
can occur because the system operates close to an instabil-
ity has been put forth in, e.g., the two above references. Re-
lated to this concept is that of critical transitions, where a 
system is close to a bifurcation point but jumps to another 
activity regime without reaching the immediate vicinity 
of that particular bifurcation point, which typically can be 
reproduced in systems with noise. This scenario has also 
been invoked as a trigger for seizure appearance (Kramer 
et al, 2012).

In trying to characterize epilepsy using dynamical sys-
tems theory, the idea of dynamical disease has been in-
troduced by Mackey and Milton in (Mackey and Milton, 
1987). It was then applied to epilepsy in various works 
(Fr�ohlich et al, 2006; Lopes Da Silva et al, 2003). What this 
concept means is simply that one should consider certain 
parameters in these models as slowly-varying and that the 
dynamic transitions observed in the resulting model are 
related to bifurcations undergone by the original model 
when varying these parameters. This naturally leads to 
the notion of dynamic bifurcation (Beno�t, 1991), closely 
related to that of canard solutions already evoked in the 
previous section. Most importantly, these concepts allow 
to explain dynamic transitions between dierent regimes 
of activity in a given model, making the hypothesis that 
a slowly-varying quantity pushes dynamically the system 
from a resting state to a seizure state.

The Jansen-Rit and the Wendling-Chauvel Models

The Jansen-Rit (JR) Model

The model (Jansen et al, 1993; Jansen and Rit, 1995) is 
composed by two subsets of cells: pyramidal (PY) cells 
and interneurons. The main variables are PSPs, there 

are three of them, which eventually gives a six-dimen-
sional model. Each subset is characterised by two func-
tions: the "pulse-to-wave" (P2W) function - which is lin-
ear and represented by a second-order linear ordinary 
dierential equation (ODE)|, and the \wave-to-pulse" 
(W2P) function, which is a static nonlinear function 
chosen to be a sigmoid. The P2W is organised as the 
output of a second-order linear dierential equation; it 
then represents a linear transfer function that changes 
presynaptic information into postsynaptic information, 
and it acts as a second-order lowpass lter. The W2P al-
lows to convert the average level of membrane poten-
tial of neurons in a subset to an average pulse density of 
potentials red by these neurons. Therefore, the model's 
equations have the following form:

y.
₀ = y3

y.
3= AaS(y1-y2)-2ay3-a2yoy.
1 = y4 

y.
4 = Aa(p(t) + C2S(C1y0)) - 2ay4 - a2y1y.
2 = y5

y.
5 = Bb(C4S (C3y0)) - 2by5 - b2y2  ,

where y0, y1 and y2 are the PSPs, p(t) is the external input, 
the Ci's are constant representing average synaptic con-
tacts between populations, and S is a sigmoid function. 
The main output of the model is y0, it represents a sum-
mated average of PSPs on PY cells and reflects an EEG 
signal. The JR model can be viewed as a non-linear feed-
back system driven by a noise input p(t) that globally 
represents the average density of aerent action potentials
from neighbouring or distant populations.

Wendling and Chauvel's Extension of the JR Model

Wendling, Chauvel and co-authors consider two popu-
lations of interneurons, namely slow (dendritic-project-
ing) interneurons (whose main associated parameter is B 
in the model) and (somatic-projecting) fast interneurons 
(whose main associated parameter is G in the model). 
Their model (Touboul et al, 2011; Wendling et al, 2002; 
Wendling and Chauvel, 2008) has the following form:

(1)

Figure 1. Minimal Wendling-Chauvel model. Block-diagram (left) and schematic diagram (right) of the minimal Wendling-Chauvel 
neural-mass model (3).
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Extension of System (3)

The main dynamical capabilities of system (3) can be un-
derstood using the concept of dynamic bifurcation; see 
Section 4 below for details. That is, the behaviour of the 
model (upon a dynamic slow variation of parameter B) is 
characterised by a slow passage through the bifurcation 
diagram for the so-called fast subsystem, obtained when
considering B as a parameter, which is obviously the case 
in (3). Hence, in (Wendling and Chauvel, 2008), Wendling 
and Chauvel show a brute-force bifurcation diagram 
(only stable branches are computed, by direct simulation 
with a suciently long time of integration so that any tran-
sients have disappeared) of their model, upon variation 
of parameter B; see figure 10 of (Wendling and Chauvel, 
2008). Using numerical continuation, one can comple-
ment such a brute-force diagram and show the unstable 
branches, which are important since they correspond to 
boundaries between dierent activity regimes. We show 
the result in Fig. 2. Furthermore, one can make B a slow-
ly-varying quantity and initiate a modeling process for 
its time evolution by creating a slow dierential equation 
for B. This is the purpose of our extension of system (3), 
which has the form

y.
₀ = y4

y.
4 = AaS(y1-y2-y3)-2ay4-a2yoy.
1 = y5

y.
6 = Aa(p(t) + C2S(C1y0)) - 2ay5 - a2y1y.
2 = y6

y.
2 = BbC4S (C3y0) - 2by6 - b2y2y.
3 = y7

y.
7 = GgC7S (C5y0 - C6/С4y2) - 2gy7 - g2y3

B
.

 
= -ε(B - B0 + αSB(y0)), 

where SB is a sigmoid function. Therefore, we push the 
approach of static variation of B exposed in (Wendling and 
Chauvel, 2008) one step further by considering this varia-
tion of B as the result of a slow dynamical process. This 
slow process involves both a decrease towards a baseline 
level B0 and a subsequent increase nonlinearly triggered 
by the behaviour of the pyramidal cells. Note that this is a 
very rst attempt to model the variation of slow dendritic 
inhibition during a seizure event, which is not yet entirely 
grounded in experimental justications but rather a step-
ping stone towards a systematic modeling of it.

y.
₀ = y5

y.
5 = AaS(y1-y2-y3)-2ay5-a2yoy.
1 = y6

y.
6 = Aa(p(t) + C2S(C1y0)) - 2ay6 - a2y1y.
2 = y7

y.
7 = BbC4S (C3y0) - 2by7 - b2y2y.
3 = y8

y.
8 = GgC7S (C5y0 - C6y4) - 2gy8 - g2y3y.
4 = y9

y.
9 = BbS (C3y0) - 2by9 - b2y4

 
 
The main reason for the extension of system (1) by 
Wendling and Chauvel is the presence of two types of 
Gaba-ergic inhibition: fast, somatic inhibition (GabaA; fast) 
and slow dendritic-projecting interneurons (GabaA; fast), 
and a dierence in their behaviour prior to the beginning 
of the seizure. In the context of temporal lobe epilepsy 
(TLE) experiments, it was shown (Cossart et al, 2001) that 
dendritic inhibition decreases in the pre-ictal period. At 
the same time the fast inhibition increases, possibly in 
part due to the reduction in the inhibitory projection to 
the fast spiking interneurons.

Extension of a "Minimal" Wendling-Chauvel Model

Reduction of the Wendling-Chauvel Model

One can reduce the Wendling-Chauvel (2) by getting rid 
of the two equations for y4 and y9. Indeed, a simple rescal-
ing shows that these two variables are proportional to vari-
ables y2 and y7, respectively. Therefore, the minimal three-
population model extension of the JR model has the form

y.
₀ = y4

y.
4 = AaS(y1-y2-y3)-2ay4-a2yoy.
1 = y5

y.
6 = Aa(p(t) + C2S(C1y0)) - 2ay6 - a2y1y.
2 = y6

y.
2 = BbC4S (C3y0) - 2by6 - b2y2y.
3 = y7

y.
7 = GgC7S (C5y0 - С6/С4y2) - 2by7 - b2y4

where the ratio C6/C4 corresponds to the aforementioned 
scaling factor. We show in Fig. 1 diagrams representing 
this minimal model. The model has the right dimension-
ality, that is, eight state variables, corresponding to four 
PSPs each modelled by a second-order system.

(3)

(4)

(2)

Figure 2. Fast oscillations in the minimal Wendling-Chauvel model. Torus canard (a) and spiking (b) solutions of system (3).
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Dynamic Bifurcations and Canards

Since the early 1980s, the canard phenomenon has giv-
en rise to numerous work, both theoretical (Beno�t et al, 
1981;Beno�t, 1991; Krupa and Szmolyan, 2001) and also in 
link with applications, in particular in neuroscience (Krupa 
et al, 2008; Moehlis, 2006). Canards are special solutions of 
dynamical systems with multiple timescales that follow for 
long time intervals repelling (locally invariant) slow mani-
folds. As a result, they are associated with rapid transitions 
- more precisely, exponentially small parameter variations 
in the timescale parameter     0 < ε <<  1 | between dierent 
activity regimes, in particular from rest to spiking (Moehlis, 
2006) in systems with at least one slow and at least one fast 
variables. This brutal transitions are typically referred to as 
explosions and, in the neural context, they can related to 
excitability properties of the cells under investigation (Des-
roches et al, 2013; Wechselberger et al, 2013).
Three-dimensional slow-fast dynamical systems also 
feature many interesting canard phenomena in link with 
neural activity. In systems with two slow variables, the 
concept of mixed-mode oscillations (MMOs) (Desroches 
et al, 2012b) has been very successful to model the in-

terplay between subthreshold oscillations and spiking 
behaviour in various cells as well as the sensitivity of 
the oscillatory pattern on parameter changes (Krupa 
et al, 2008). On the other hand of the spectrum, three-
dimensional systems with one slow variables naturally 
display dynamic bifurcations (Beno�t, 1991), which cor-
respond to slow passages through bifurcation points of 
the fast subsystem (where the slow variable is frozen 
and considered as a parameter). Dynamic bifurcations 
generate delays in the resulting full dynamics (e.g. dy-
namic Hopf bifurcation) and since the pioneering work 
of Rinzel (Rinzel, 1986), this concept has become a key 
tool to understand bursting oscillations from a timescale 
viewpoint. Indeed, the method of slow-fast dissection in-
troduced by Rinzel (Rinzel, 1986) in the mid-1980s aims 
to compare the transitions between quiescence and burst 
phases of a bursting system, with passage through bifur-
cation points of the fast subsystem. This idea was further 
exploited by Izhikevich (Izhikevich, 2000) in the early 
2000 to come up with a rather complete classication of 
bursting patterns.

The link between canards and bursting through 
spike-adding has been suggested by Terman in (Terman, 
1991), then more recently revisited in (Guckenheimer 
and Kuehn, 2009) and, viewing it as another form of ca-
nard-explosive phenomenon, in (Desroches et al, 2012a). 
A related link between canard dynamics and bursting is 
through transition between bursting and spiking, which 
involve canard solutions within the burst, termed torus 
canards. This phenomenon has been observed in a num-
ber of neural models (Burke et al, 2012) and it is currently 
being analysed theoretically, in particular the transition 
regimes from MMOs to torus canards (Burke et al, 2016). 
Torus canards are solutions for which the burst stays 
close to both attracting and repelling families of limit 
cycles of the fast system. For a system to display torus 
canard dynamics, a fold bifurcation of cycles is required 
in the fast system. Described in an elementary way by 
Izhikevich in the context of elliptic bursters (2001), then 
unveiled more clearly by Kramer, Traub and Kopell in 
2008 in the context of a Purkinje cell model (Kramer et al, 
2008), it was then found systematically in many neural 
models whose fast subsystem displays a fold bifurca-
tion of cycles (in link with a torus bifurcation in the full 
system) in (Burke et al, 2012). Beyond the mathematical 
interest for such complicated canard solutions that also 
include fast oscillatory dynamics, the concept of torus 

Figure 3. Torus canard orbit in the minimal Wendling-Chauvel 
model with slowly-varing dendritic inhibition. The orbit is projected 
onto the ((Y0;B) space and superimposed onto the bifurcation 
diagram of the fast subsystem (using slow-fast dissection). This plot 
is a zoom of Fig. 2 (a) in the region of low-voltage fast oscillations 
at seizure onset. The point TR indicates the location of the torus 
bifurcation of the full system, which lies very close to the fold of 
cycles bifurcation points of the fast subsystem as expected in a torus 
canard phenomenon (Burke et al, 2012).

Figure 4. Torus canard output time series. The time series for variable Y0 of the torus canards shown in Fig. 3 is shown.



232     doi:10.20388/omp2016.003.0038

M. Desroches et al. Slow-Fast Transitions to Seizure States in the Wendling-Chauvel Neural Mass Model

canards is the natural extension to that of canard cycle to 
understand the boundaries of the bursting regimes in a 
large class of models. We now give numerical evidence 
that torus canards occur in the extended Wendling-
Chauvel neural-mass model (4), in link with the transi-
tion to seizure states.

Torus Canards in the Extended Model

A simple numerical bifurcation analysis of the mini-
mal WC model (4) reveals a structure that is suggestive 
of canard dynamics in the extended system where the 
dendritic inhibition varies slowly. This is a natural step 
forward from a quasi-static variations of these param-
eters as performed in (Touboul et al, 2011; Wendling et 
al, 2002) and which already revealed a bifurcation with 
both stationary and oscillatory branches of solutions, in 
particular multiple stable oscillatory branches separated 
by fold bifurcations of cycles. Therefore, when these pa-
rameters are slowly-varying, one can observe by direct 
simulation of the extended model dynamic transitions 
between dierent regimes of activity: quasi-stationary, 
quasi-periodic with small-amplitude oscillations, quasi-
periodic with large-amplitude oscillations. This allows to 
reproduce times series featuring transitions to epileptic 
seizures, similar to the simulations from the 2002 paper 
by Wendling and Chauvel where they vary these quanti-
ties quasi-statically.

Going even one step beyond a slow drift on the den-
dritic inhibition, we propose a slow dynamics on this 
main parameter as the result of a dierential equations, 
which opens the way for a biophysical modeling of its 
evolution in a seizure regime. In particular, torus ca-
nards orbits organise the transition to solutions with epi-
leptic bursts. In Figs. 2 and 3, we present the result of di-
rect simulations of our extended model (4). The solution 
is plotted on top of the bifurcation diagram of the fast 
subsystem, as is customary when performing a slow-fast 
dissection of the problem, and we can observe a solu-
tion that evolves around the fold bifurcation of cycles 
of the fast subsystem, hence containing a torus canard 
segment; see Fig. 2 (a) and a zoomed view in Fig. 3. The 
same solution is presented in the time domain in Fig. 4. 
In Fig. 2 (b), we show a solution that converges towards a 

fast-spiking regime, and which corresponds to a slightly 
dierent parameter set as in the previous case. This is a 
numerical evidence that the torus canard regime organ-
ises the transition between spiking and epileptic bursts 
in this extended model.

We also revisit the argument by Wendling and 
Chauvel according to which their model extends that of 
Jansen and Rit in that it allows to reproduce small-am-
plitude high-frequency oscillations at seizure onset. We 
show in Fig. 5 that this eect is due to the presence of a sec-
ond inhibitory population. Indeed, the fold bifurcations 
of cycles responsible for the appearance of such small-
amplitude burst (transition orbits being torus canards) 
disappear if the external input p increases past a certain 
value. However, this value of p increases substantially as 
the somatic inhibition parameter gets larger. That is to 
say, when the somatic inhibition parameter is zero (cor-
responding to the Jansen-Rit model), a small increase 
of p destroys the possibility for these small-amplitude 
bursts to exist, whereas when it is non-zero and becomes 
larger, p has to increase beyond reasonable values for 
that phenomenon to happen, even though it can hap-
pen. That is, the Jansen-Rit model can sustain torus ca-
nard solutions if the dendritic inhibition varies slowly, 
however the associated parameter regime is unrealistic. 
On the contrary, in the Wendling-Chauvel model, when 
the somatic inhibition parameter is suciently large, these 
small-amplitude bursts are always present at seizure 
onset and the adequate bifurcation structure of the fast 
subsystem is guaranteed. This is precisely why, in this 
modeling framework, the presence of a second inhibi-
tory population is crucial to capture seizure-like states.

Conclusions and Perspectives

In this short article, we have shown that the Wendling-
Chauvel neural-mass model can be reduced by two 
equations without losing any salient feature of its dy-
namics, simply eliminating two redundant equations. 
A bifurcation study of this model when considering the 
slow inhibitory synaptic gain as the main parameter, 
reveals a structure that allows for multiple oscillatory 
solutions to exist. Previous studies like (Grimbert and 
Faugeras, 2006; Touboul et al, 2011; Wendling et al, 2002) 

Figure 5. Torus canard in the Jansen-Rit model. By increasing the (xed) value of the external input p, one can obtain a bifurcation 
diagram for the fast subsybtem which has the correct structure to allow for torus canards in the extended systems where B is slowly 
evolving. Panel (a) shows the solution of the extended system together with the bifurcation diagram of the fast subsystem for p = 0:25; 
panel (b) shows a similar projection for p = 1.
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have stopped at this fast subsystem bifurcation struc-
ture, then varying the main quasi-statically or driving a 
noisy external input in order to generate time series that 
resemble EEG data during seizure events. In this work, 
we push the slow-fast analysis further by proposing 
a rst dynamical modeling of the slow dendritic inhibi-
tion B within a neural-mass model, making it evolve 
slowly through the fast subsystem bifurcation diagram, 
in particular near bifurcation points. In this way, we can 
produce seizure-like time series and understand dy-
namically how they appear and disappear depending 
on the value of secondary parameters (in particular, the 
constant value of the somatic inhibition). Performing this 
dynamic bifurcation study, we can also understand why 
the second inhibitory population is important to obtain 
better synthetic time series for transitions to seizure.

Furthermore, we highlight the fact that canard the-
ory, which has already been invoked to explain rapid 
transitions in neural rhythms, could also play an impor-
tant role in modeling epileptic seizures. This comple-
ments the idea of modeling epilepsy as a dynamical 
disease, which then manifests itself through dynamic bi-
furcation that can be related to the presence of maximal 
canard solutions acting as boundaries between healthy 
and pathological states.

Future work will include making the slow evolution 
of dendritic (and possibly somatic) inhibition more pre-
cise, with the aim to gain more biological plausibility. We 
also want to compare neural-mass models to network 
models (e.g. that of Lopes da Silva et al. (Lopes Da Silva 
et al, 2003)), where slow-fast analysis can also be per-
formed, canard solutions playing an equally important 
role, but where the variables are easier to control and to 
relate to biophysical elements.
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