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Abstract. Methylation of DNA cytosine bases is a key epigenetic modification that plays an important role in the regu-

lation of gene expression and the formation of the epigenome. Numerous studies of the human genome show that there 

is a close relationship between DNA methylation, age and sex of a person. Until now, the popular model has been the 

linear change in the methylation level with age. Here we find a fundamentally different DNA methylation behavior, 

namely the nonlinear dependence of the methylation level on age. We identify CpG probes whose methylation changes 

exponentially with age or according to a power law, and perform Gene Ontology enrichment analysis of the latter. Our 

results are relevant to understanding how DNA methylation changes with age and the found nonlinear CpG sites can be 

used to construct new epigenetic clocks.   

 

Keywords: DNA methylation; aging; nonlinear epigenetic biomarkers. 
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DNA – Deoxyribonucleic acid 

CpG – cytosine – phosphate – guanine 
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GO – Gene Ontology 

GEO – Gene Expression Omnibus 
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ogy Information 

REVIGO – reduce and visualize Gene On-
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BP – Biological Processes 

 

Introduction 

Aging is a complex process characterized by 

global physiological changes in the body. A dis-

tinctive feature of aging is epigenetic modifica-

tions of the genome that affect gene expression 

and regulation. The key epigenetic mechanism 

is DNA methylation, which involves the addi-

tion of a methyl CH3 group to the cytosine ba-

ses of DNA. Curiously, abundant experimental 

evidence suggests age-related changes to DNA 

methylation are associated with an increased 

risk of many diseases such as diabetes 

(Volkmar et al., 2012), Alzheimer’s disease (De 

Jager et al., 2014) cardiovascular disease 

(Zhong et al., 2016) and cancer (Klutstein et al., 

2016). There is also a search for epigenetic bi-

omarkers of aging, the methylation of which is 

significantly different in young and older peo-

ple (Bocklandt et al., 2011; Bell et al., 2012; 

Garagnani et al., 2012). Moreover, DNA meth-

ylation is used to quantify intrinsic ageing by 

developing various epigenetic clocks to predict 

biological age based on methylation data 

(Horvath, 2013; Horvath et al., 2016).  

The overwhelming majority of studies on 

aging biomarkers have focused on detecting 

linear biomarkers, whose methylation level 

changes linearly with age. However, linear 

models do not always reflect the real depend-

ence of DNA methylation level on age, and 

therefore, recently, attempts have been made to 

build nonlinear mathematical models of DNA 

methylation dynamics (Zagkos et al., 2019) and 

to use nonlinear models to predict biological 

age (Bekaert et al., 2015; Snir et al., 2019). Alt-

hough earlier it has been discovered that meth-

ylation of CpG probes can change nonlinearly 

until adulthood (Horvath, 2013), specific CpG 

sites with methylation change law that differ 

from linear one during life were not reported 

yet. For this reason, here we have developed a 

procedure for finding nonlinear (power-law and 

exponentially) epigenetic biomarkers of aging 

and carried out GO pathway enrichment anal-

yses of selected nonlinear probes. 

 

Material and methods 

Methylation Datasets. We consider two 

blood-based Illumina 450k datasets including 

only healthy subjects: GSE40279 (Hannum et 

al., 2013), GSE87571 (Johansson et al., 2013) 

from the Gene Expression Omnibus (GEO) da-

tasets repository (Barrett et al., 2009) of The 

National Center for Biotechnology Information 
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(NCBI). The total number of subjects in the 

GSE40279 dataset is 656, of which 338 are fe-

males and 318 are males aged 19 and 101, and 

the total number of subjects in the GSE87571 

dataset is 729, of which 388 are females and 

341 are males between the ages of 14 and 94 

years old. We chose these datasets as they have 

the largest age range among the currently avail-

able DNA methylation datasets that are critical 

for identification and distinction nonlinear and 

linear trends. 

 
Data processing. Raw data files for 

GSE87571 were extracted and pre-processed 

using minfi and normalized using the prepro-

cessFunnorm function from the Bioconductor 

package (Aryee et al., 2014). For GSE40279 

dataset the analyses were carried out on pre-

processed beta values available in GEO, but as 

the authors claim, GSE40279 beta values were 

adjusted for internal controls by the Illumina's 

Genome Studio software but not normalized. In 

addition, cross-reactive and polymorphic 

probes (Zhou et al., 2017) and probes on the X 

and Y chromosomes were excluded from fur-

ther consideration. After performing the pre-

processing steps, 414505 and 414950 probes re-

mained for GSE40279 and GSE87571, respec-

tively. Altogether 414505 probes were common 

to the two datasets and were included in further 

analysis. We also consider subsets of males and 

females separately, as methylation is known to 

be sex-specific (Liu et al., 2010; Tapp et al., 

2013; Singmann et al., 2015; Yousefi et al., 

2015; Yusipov et al., 2020). 

 
Identification of CpG probes with nonlinear 

changes in methylation with age. We focus our 

attention only on CpG sites whose methylation 

levels change significantly with age. For this 

beta values for each probe were fitted to a linear 

regression model (through OLS function from 

statsmodels module for Python) using chrono-

logical age as covariables. We remove CpG site 

from consideration if its linear regression slope 

is less than 0.001 and its linear regression deter-

mination coefficient is less than 95% percentile 

for the distribution of determination coefficient 

of all sites.  

To identify nonlinear CpG probes we fit beta 

values with a linear regression model for se-

lected significantly age-associated sites in dif-

ferent scales: i) untransformed beta values from 

untransformed age (Fig. 1A), Eq. 1; ii) logarith-

mic beta values from logarithmic age (Fig. 1B), 

Eq. 2; iii) logarithmic beta values from untrans-

formed age (Fig. 1C), Eq. 3,  

 β = 𝑠 ∙ 𝑎𝑔𝑒 + 𝑖, (1) 

 ln β = 𝑙 ∙ ln 𝑎𝑔𝑒 + 𝑚, (2) 

 ln β = 𝑞 ∙ 𝑎𝑔𝑒 + 𝑝, (3) 

where β are beta values, 𝑠, 𝑖, 𝑙, 𝑚, 𝑞, 𝑝 are fitting 

parameters. 

Linear regression of beta values versus age 

in the logarithmic axes matches to the power 

law β̃ = 𝑒𝑚 ∙ 𝑎𝑔𝑒𝑙 in original axes; whereas re-

gression in the semi-logarithmic axes matches 

to the exponential law  β̃ = 𝑒𝑞∙𝑎𝑔𝑒+𝑝 in original 

axes (see Fig. 1D).  

The quality of models is evaluated by linear 

regression determination coefficient calculated 

for three resulting fits shown in Fig. 1D. This 

coefficient is calculated as 

 𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
,  (4) 

where 𝑆𝑆𝑟𝑒𝑠 = ∑ (β𝑖 − β̃𝑖)
2𝑀

𝑖=1  is the residual 

sum of squares, 𝑆𝑆𝑡𝑜𝑡 = ∑ (β𝑖 − 〈β〉)2𝑀
𝑖=1  is the 

total sum of squares, 〈β〉 =
1

𝑀
∑ β𝑖
𝑀
𝑖=1  is the 

mean of the observed data, β1, β2, … , β𝑀 are 

beta values of specific CpG, β̃1, β̃2, … , β̃𝑀 are 

fitted beta values and 𝑀 is the number of meth-

ylation points, that is, the number of subjects.  

The coefficient of determination is a meas-

urement, known as the «goodness of fit», is rep-

resented as a value between 0.0 and 1.0, where 

1.0 indicates a perfect fit that is a highly reliable 

model. Moreover, we calculate power-law/ex-

ponential fits of complementary beta values, 

1 − β, on age and take them as better models if 

their determination coefficient is at least 5% 

higher than corresponding fits of beta values, β. 

Finally, we compare three determination co-

efficients of linear, power-law and exponential 

fit and select the fit with the highest value of 

this characteristic as the best model reflecting 

the change in methylation levels with age. 
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Gene Ontology Analysis. To take into ac-

count the fact that several CpG sites can corre-

spond to the same gene, we perform Gene On-

tology enrichment using the methylglm function 

implemented in the methylGSA Bioconductor 

package (Ren & Kuan, 2019) with default set-

tings. This function allows carrying out the GO 

enrichment analysis of gene list after adjusting 

for the number of CpG sites. The list of GpGs 

with p-values of linear regression is used as in-

put to the methylglm function. P < 0.05 is re-

garded as statistical significance. For more in-

formation on the ontology, we apply REVIGO 

(Supek et al., 2011) to GO term lists to remove 

redundant terms and to combine the remaining 

similar terms into even larger functional-se-

mantic clusters. 

 

Results 

Identification of nonlinear probes. We se-

lected CpG probes whose methylation is sig-

nificantly related to age and limited ourselves 

to considering 6844/6954 CpG sites in the 

male/female subsets and 14244/12962 probes 

in the male/female subsets in GSE40279 and 

GSE87571 datasets, respectively. The number 

of probes satisfying the selection criteria was 

drastically lower in GSE40279 dataset com-

pared to GSE87571. This difference can be at-

tributed to the fact that only not normalized 

beta values were available in GEO for this da-

taset. 

Among significantly age-associated probes, 
we identified CpGs with nonlinear dependence 

of the methylation level on age using the tech-

nique described in the Methods section. We 

considered CpG to be nonlinear if the nonlinear 

fit was 1% better than the linear one. The num-

ber of identified CpG sites having linear and 

nonlinear (power-law or exponential) age-asso-

ciated methylation changes is presented in Ta-

ble 1. Most nonlinear probes are probes whose 

methylation levels change according to the 

power law with aging. The number of power-

 
Fig. 1. Illustration of the algorithm for nonlinear CpG sites determining. A) linear regression of beta values 

versus age in the original axes. B) linear regression of beta values versus age in semi-logarithmic axes. C) linear 

regression of beta values versus age in logarithmic axes. D) the resulting nonlinear fits in the original axes 
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law sites ranges from 4 to 31% of the total num-

ber of sites considered, depending on gender 

and database. Intriguingly, the number of 

power-law CpGs is much higher in males than 

in females, so the nonlinearity of DNA methyl-

ation is sex-specific. 

Next, we found common nonlinear (power-

law) CpGs for GSE40279 and GSE87571 da-

tasets, the number of which is shown in Fig.2, 

but we could not find common ones among the 

exponential probes. 

Examples of typical CpG probes whose 

male’s methylation level changes linearly, ac-

cording to a power law and exponentially with 

age are presented in Fig. 3. CpG cg16867657 

corresponding to ELOVL2 gene is shown as an 

example of a linear CpG site (see Fig. 3A, D). 

The dynamics of change in the methylation 

level of the power-law probes (see Fig. 3B, E) 

is characterized by a faster change of methyla-

tion in young people and slower in the elderly, 

in contrast with an average rate. Exponential 

changes in methylation with age show the op-

posite behavior. On the graphs of nonlinear 

sites in GSE40279 dataset, the difference be-

tween nonlinear and linear fits does not look as 

significant as in GSE87571 dataset. This is be-

cause methylation data in GSE40279 dataset is 

uneven and contains few subjects under the age 

of 40, which directly affects the behavior of 

nonlinear fits. 

 

GO functional enrichment analysis 

To explore the biological functions of the 

nonlinear CpGs, we performed GO pathway en-

richment analyses. We looked at lists of power-

law probes that were common to the two da-

tasets and divided them into 3 groups: CpG sites 

Table 1 

 

The number of identified CpG probes having different laws 

 (linear and nonlinear) of age-associated methylation changes  

for GSE40279 and GSE87571 datasets 

 

 GSE40279 GSE87571 

Males 6844 14244 

Linear 

Power law 

Exponential 

5906 

934 

4 

9780 

4419 

45 

Females 6954 12962 

Linear 

Power law 

Exponential 

6638 

301 

15 

10365 

2564 

33 

 

 
 

Fig. 2. Venn diagrams showing the intersection of nonlinear (power-law) CpG sites of GSE40279 and 

GSE87571 datasets; A) for males, B) for females 
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that are nonlinear in both males and females (17 

CpGs); CpG sites that are nonlinear only in 

males (166 CpGs) and CpG sites that are non-

linear only in females (45 CpGs). We used 

REVIGO to remove redundant terms from GO 

term lists and concentrated on describing «Bio-

logical Processes» (BP). 

Analysis of a group of sites, the methylation 

of which changes nonlinearly with age in both 

males and females, identified 5 most significant 

BP: GO:0007188 (adenylate cyclase-modulat-

ing G-protein coupled receptor signaling path-

way), GO:0006835  (dicarboxylic acid 

transport), GO:0035249 (synaptic transmission, 

glutamatergic), GO:0007215 (glutamate recep-

tor signaling pathway) and GO:0007187 (G-

protein coupled receptor signaling pathway, 

coupled to cyclic nucleotide second messen-

ger). These BP are a subset of two major bio-

logical functions - adenylate cyclase-modulat-

ing G-protein coupled receptor signaling path-

way and dicarboxylic acid transport. 

For the group of sites, the methylation of 

which changes nonlinearly only in males, en-

richment analyses revealed 4 most significant 

BP: GO:0031644 (regulation of neurological 

system process), GO:0098742 (cell-cell adhe-

sion via plasma-membrane adhesion mole-

cules), GO:0045185 (maintenance of protein 

location) and GO:0007156  (homophilic cell 

adhesion via plasma membrane adhesion mole-

cules). 

Finally, analysis of a group of sites, the 

methylation of which changes nonlinearly only 

in females, identified 2 most significant BP: 

GO:0030518 (intracellular steroid hormone re-

ceptor signaling pathway) and GO:0050848 

(regulation of calcium-mediated signaling). 

 

Discussion 

We applied regression analysis for DNA 

methylation data from two datasets (GSE40279 

and GSE87571) to identify CpG probes whose 

methylation levels change nonlinearly with age 

(according to the power law or exponentially). 

We found that a large number of sites have 

power-law methylation changes with age, 

which characterizes a rapid change in methyla-

tion at a young age and a slower change in the 

elderly. Interestingly, there were many more 

such sites for males than females. Thus, the 

nonlinearity of DNA methylation is sex-spe- 

 
 
Fig. 3. Examples of CpG probes whose methylation level changes linearly, according to a power law, 

exponentially with age in GSE87571 dataset (A, B, C) and in GSE40279 dataset (D, E, F). The black dotted 

line indicates the linear fit for comparison 
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cific. We have also identified several dozen 

sites whose methylation changes exponen-

tially. 

Next, we selected a small number of power-

law sites that are nonlinear in both GSE40279 

and GSE87571 datasets and performed GO 

pathway enrichment analyzes. Pathway analy-

sis of general nonlinear CpGs for males and fe-

males indicated enrichment in two global bio-

logical processes: adenylate cyclase-modulat-

ing G-protein coupled receptor signaling path-

way and dicarboxylic acid transport. Consider-

ing probes that are nonlinear only in males, we 

got that the most enriched biological functions 

are regulation of neurological system process, 

maintenance of protein location and cell-cell 

and homophilic cell adhesion via plasma-mem-

brane adhesion molecules. Analyzing the en-

richment of CpG sites that are nonlinear only in 

females, we observed other significant biologi-

cal processes: intracellular steroid hormone re-

ceptor signaling pathway and regulation of cal-

cium-mediated signaling. 

 

While conducting the research, we aimed to 

find reliable nonlinear DNA methylation 

changes not only in one specific dataset, so we 

considered two datasets. But at the same time, we 

faced some limitations: the analyzed datasets dif-

fer in terms of data preprocessing procedures and 

the uniformity of subject distribution by age. In 

particular, only not normalized beta values were 

available in GEO for GSE40279 dataset, and the 

data are unevenly distributed and contain few 

methylation values for young people. But despite 

the limitations that have arisen, we have identi-

fied for the first time specific nonlinear bi-

omarkers of aging, the law of methylation 

changes of which differs from linear one. In the 

future, it is possible to build novel epigenetic 

clocks that will be based on nonlinear changes in 

DNA methylation level. 
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