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Abstract. In probabilistic conditions, people choose low-payoff alternatives on some trials, thus failing to maximize 

their payoffs. We suggest that such behavior implicates exploration of task rules by choosing risky options instead of 

exploiting more rewarding alternatives. We hypothesized that exploration would affect brain responses to feedback. 

Further, a shift to exploration develops gradually and, therefore, a decision to make an exploratory choice may be ob-

served on trials preceding risky choices. We investigated beta power (16–30 Hz) in the magnetoencephalographic data 

from 62 healthy participants performing a two-choice probabilistic gambling with monetary gains and losses. The effects 

were found at 600–800 ms after feedback onset in frontal, central and occipital brain regions. On trials preceding risky 

choices we identified a decrease in beta power which implies a change in decision-making strategy and a shift towards 

cognitive flexibility and exploration. An increase in beta power during risky decisions indicates that reward learning 

mechanisms are implicated. Increases in beta power following losses in risky choices indicates at the process of updating 

the internal representation of the task. In summary, current findings reveal that the outcomes of exploratory trials are 

processed differentially, while there is no evidence of such processing on exploitatory trials. This corroborates the hy-

pothesis that exploratory choices represent active probing into the surmised task rules. Current findings also suggest that 

the processing of outcomes preceding the exploratory trials is altered in such a way that subjects override their intention 

to use the utility model and reset their behavioral strategy. 
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Introduction 

In a probabilistic environment people often 

tend to choose low-payoff options, thus failing 

to maximize their gains (Shanks et al., 2002). 

One explanation of such behavior is that humans 

develop a set of expectations about the task reg-

ularities, and test their beliefs by exploring risky 

low-payoff alternatives instead of consistently 

exploiting the rewarding options (Sayfulina et 

al., 2020; Cogliati Dezza et al., 2017). This be-

havior may seem to be in striking contradiction 

to reward learning and rational choice, although 

such a strategy may be adaptive in the long run 

in realistic situations (Friston et al., 2015; Parr & 

Friston, 2017). Neuronal and cognitive pro-

cesses underlying internally triggered shifts to 

exploratory behavior are largely unknown.  

In the current study, we aimed to reveal neu-

rophysiological correlates of a change in deci-

sion-making towards exploratory strategy in the 

2-choice probabilistic gambling task. Based on 

the evidence that risky choices of low-payoff op-

tions could be acts of intentional probing into 

surmised task rules (Sayfulina et al., 2020; 

Cogliati Dezza et al., 2017), we hypothesized 

that, first, greater importance of outcomes on 

risky exploratory trials compared with exploita-

tory ones will induce differential neuronal sensi-

tivity to the positive versus negative feedback re-

garding the outcome of the risky choice. Second, 

we hypothesized that a decision to switch to ex-

ploration of task rules is not accidental or instan-

taneous (Gilzenrat, Nieuwenhuis, Jepma, & Co-

hen, 2010; Jepma & Nieuwenhuis, 2011), and 

some covert preparation to make a change in the 

strategy towards exploration might take place 

before the exploratory choices themselves: 

therefore, we expected that some correlates of 

readiness to take risks could be detected on trials 

preceding exploratory choices. Based on these 

assumptions, we expected to observe altered 

brain responses to feedback on exploitatory trials 

preceding risky exploratory choices. 
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We focused our analysis on oscillations in the 

beta band because this frequency range is related 

to reward processing (HajiHosseini et al., 2012; 

Luft, 2014) and is indicative of keeping or 

changing cognitive sets (Engel & Fries, 2010). 

 

Methods 

Participants. 62 healthy participants  

(31 male, 34 female, mean age = 23, SD = 6.5) 

having no records of neurological or severe vis-

ual impairment took part in the study. 

 

Ethics statement. This study was carried in 

accordance with the Declaration of Helsinki; 

the study protocol was approved by the Ethics 

Committee of Moscow State University of Psy-

chology and Education. All participants gave 

written informed consent.  

 

Experimental paradigm. We used a modified 

version of a probabilistic gambling task. Partici-

pants were instructed to select one of the two fig-

ures presented on the screen simultaneously by 

pressing a corresponding button (Fig. 1). Each 

pair of figures was derived from a hiragana hier-

oglyph rotated at different angles. A new pair of 

figures was presented in each experimental 

block. Selection of one figure was followed by a 

gain more often than by a loss (70%/30%, high-

payoff option), while the probabilities were re-

versed for the other figure in each pair 

(30%/70%, low-payoff option). A positive or 

negative feedback (a gain or a loss) was deliv-

ered 1000 ms after pressing the button. Partici-

pants were supposed to learn which figure was 

rewarded more often and press the correspond-

ing button. Upon completing each block, partic-

ipants were presented with their cumulative 

score. 

 

Trial selection. Within each experimental 

block, we considered only trials that followed 

reaching the learning criterion (four consecu-

tive choices of a high-payoff stimulus). Selec-

tion of a low-payoff stimulus during these peri-

ods were considered to be exploratory choices 

(“risk”). We also analyzed exploitatory trials 

immediately preceding exploratory choices 

(“prerisk” correspondingly). Reference condi-

tion was exploitatory choices not neighboring 

exploratory choices (“norisk”).  

 

MEG data processing. MEG data were rec-

orded using a 306-channel MEG system (Elekta 

Neuromag VectorView). The analysis of MEG 

data was performed with custom scripts using 

MNE-python software. Independent compo-

nent analysis (ICA) was used to remove biolog-

ical artefacts. Power in the beta frequency range  

(~16–30 Hz) was calculated using multitaper 

time-frequency analysis, for each trial sepa-

rately.  

 
Fig. 1. Experimental paradigm (see text for details) 
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Statistics. Our analysis aimed to investigate 

two main contrasts: (1) exploratory trials 

(“risk”) vs. exploitatory trials (“norisk”), and 

(2) exploitatory trials preceding exploration 

(“prerisk”) vs. exploitatory trials (“norisk”) 

aiming at pinpointing neural mechanisms un-

derlying decision-making prior to and during 

making an exploratory (“risky”) choice. The 

area and time of interest were obtained by ap-

plying a linear mixed model (LMM) to all com-

bined planar gradientometers for the interaction 

of choice type (‘norisk’, ‘prerisk’, ‘risk’, ‘post-

risk’) x feedback sign (negative and positive) 

with False Discovery Rate (FDR) correction for 

multiple comparisons. The interaction was used 

in accordance with the expected differential re-

sponses to feedback sign depending upon 

choice types. Specifically, we expected higher 

feedback salience in exploratory choices. We 

identified significant channels in the time inter-

val as of 600–800 ms post-feedback and con-

sidered this time interval in further statistical 

comparisons. Channels with p-value < .05 were 

following FDR correction for multiple compar-

isons were taken for the further analyses. For 

further statistical comparisons we used linear 

mixed-effects model (LMMs) with the follow-

ing fixed effects: ‘choice type’ (4 levels: ‘nor-

isk’, ‘prerisk’, ‘risk’ and ‘postrisk’), ‘feedback 

sign’ (two levels: ‘gain’ and ‘loss’) and their in-

teraction, subjects as the random effect, and 

beta power averaged in 600–800 ms post-feed-

back as the dependent variable. The Tukey 

HSD test for multiple comparisons was used for 

post hoc analyses. The results are reported for 

p-values < 0.05. 
 

Results 

We have revealed 37 significant combined 

planar gradientometers located over frontal, 

central and occipital areas at 600–800 ms after 

feedback onset (p < .05, FDR-corrected (Fig. 

2A). We report the following results for those 

gradientometers. 

Fig. 3 illustrates the topographical maps of 

beta power across choice types: in exploratory 

(‘risk’) trials (Fig. 3A), in trials preceding ex-

ploratory ones (‘prerisk’) (Fig. 3B), in exploita-

tory (‘norisk’) trials (Fig. 3C). 

LMM analysis of post-feedback beta re-

vealed a significant effect of ‘choice type’  

(F3, 4320 = 9.48, p < .001). Post hoc analysis 

showed that the beta power on “prerisk” trials 

was significantly smaller compared to the other 

 
 

Fig. 2. Feedback-related parietal beta power differentiates exploratory “risk” trials from exploitatory 

choices.  

A – significant sensors derived from the fixed effects ANOVA interaction (choice type x feedback sign) at 

800 ms after feedback onset (p < .05, FDR-corrected); B – beta power averaged over significant sensors as 

a function of choice type; C – beta power averaged over significant sensors split by feedback sign in each 

choice type. Post hoc comparisons were performed using Tukey’s test. In (B) and (C), means and standard 

errors are shown.  

*** p < .001, * p < .05, **.001 < p < .01. 
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exploitatory choice types (“norisk” and “post-

risk”), whereas beta in risky decisions was the 

highest (Fig. 2B, 3D, 3E). We also found a sig-

nificant effect of ‘feedback sign’ (F1, 4317 = 

= 33.48, p < .001) and a significant interaction 

of ‘choice type’ and ‘feedback sign’  

(F3, 4318 = 13.78, p < .001). Post hoc compar-

isons involving feedback sign showed that the 

beta power was significantly greater after losses 

compared with gains on “risk” and “postrisk” 

trials only (Fig. 2C, 3F). 

 

Discussion  
In our everyday live, we have to make 

choices, and many choice options imply un-

certainty or risk. If people behaved rationally, 

people would prefer options with the highest 

expected value, but, in practice, different 

choices may prevail in an attempt to explore 

the option with the potential to obtain the 

highest possible outcome in future. Here, we 

investigated an internally triggered shift from 

safe exploitatory behavior to risky explora-

tory one using a probabilistic binary choice 

task with a constant pay-off probability. Ex-

ploratory behavior manifests itself as rare 

spontaneous choices of a low-payoff risky op-

tion made by the participants, who by trial-

and-error learning acquired knowledge of ex-

pected values and demonstrated stable prefer-

ence towards the high-payoff option, i.e. ex-

ploitatory behavior. Such exploratory choices 

might represent intentional behavioral acts 

committed to maximize the benefit at the ex-

pense of the current utility model. 

Using MEG beta power as a neural signa-

ture of maintaining or changing a current cog-

nitive set (Spitzer & Haegens, 2017), we 

found that risky exploratory choices differed 

from the exploitatory behavior in the way 

how the brain processed the feedback signal 

about the choice outcome. Risky exploratory 

choices, in contrast to exploitatory ones, were 

followed by dramatically increased differen-

tial sensitivity of beta power to the feedback 

sign. While reward for risky choice was ac-

 

Fig. 3. Feedback-related beta power differentiates exploratory “risk” trials from exploitatory types at 600-

800 ms after feedback onset. A – topographical map of beta power in exploratory “risk” choice type; B – 

topographical map of beta power in “prerisk” choice type; C – topographical map of beta power in exploita-

tory “norisk” choice type; D – topographical map of difference in beta power between “risk” and “norisk” 

choice types. E – topographical map of difference in beta power between “prerisk” and “norisk” choice 

types; F – topographical map of difference in beta power between negative and positive feedback signs on 

the “risk” choice type. Statistically significant sensors derived from t-tests are marked by white circles  

(p < .05, FDR-corrected) 



BETA-BAND POWER PREDICTS EXPLORATORY CHOICES IN PROBABILISTIC ENVIRONMENT 

  Opera Med Physiol. 2021. Vol. 8 (3)  |  63 

companied by a highly significant drop in the 

beta power, its punishment was followed by 

an equally significant beta increase. This dif-

ferential effect was most pronounced over the 

frontal, central and occipital brain areas. The 

localization and timing of the effect comply 

with those reported by Yaple et al. (2018).  

Strong differences in the neural beta re-

sponses to losses and gains after exploratory 

(risky) choices support the idea that explora-

tory choices represent active probing into the 

surmised task rules (Sayfulina et al., 2020; 

Cogliati Dezza et al., 2017), and the outcomes 

of such choices may imply learning task reg-

ularities. Since rewarding feedback during 

exploratory trials contradicts the utility model 

acquired by participants and thus remains un-

expected, it may trigger model updating 

(HajiHosseini et al., 2012). This interpreta-

tion fits well with the supposed role of beta 

power suppression during the changes of cog-

nitive set (Spitzer & Haegens, 2017). In-

creases in beta power following gains are de-

scribed in previous literature and interpreted 

in terms of a specific role of beta oscillations 

in the tendency to adhere to the current mo-

tor/cognitive set (Luft, 2014).  

Unlike discriminative beta reactivity to 

losses and gains on risky trials, beta power 

was strongly suppressed after both positive 

and negative feedback signals on trials that 

preceded risky choices. In the view of the 

functional role of beta suppression, this sug-

gests that processing of choice outcomes is al-

tered in such a way that subjects override their 

intention to use the utility model and intend 

to reset their behavioral program regardless of 

the outcome of their current act. The involve-

ment of left central areas in the effect might 

imply a change in decision-making towards a 

more flexible strategy (Luft, 2014), whereas 

frontal areas suggest reward learning pro-

cesses. Considering the two findings com-

bined, we suggest that we have observed a 

gradually evolving shift towards exploration. 

Although the effects observed in the current 

study were phasic, the finding of the effects 

that covertly precede the exploratory choice, 

are compatible with the notion of tonic 

changes in noradrenergic efflux being an im-

portant part of the mechanism that predis-

poses the subject towards explorations (As-

ton-Jones & Cohen, 2005; Usher et al., 1999; 

Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 

2011). 

Our findings suggest that the neurocogni-

tive mechanism of a shift towards exploration 

may imply at least two stages: (1) decreased 

salience of outcomes on a trial preceding ex-

ploration, suggesting readiness to abandon 

the current decision-making strategy and re-

set the current behavioral program, and (2) in-

creased processing of outcomes of explora-

tory choices, which may induce utility model 

updating. 
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