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Abstract. Deciphering the cellular and molecular mechanisms of the development and remodeling of blood vessels is 
one of the topical areas of modern (patho)physiology and cell biology. Initially, interest in these processes was mainly 
associated with the need to find the mechanisms of tissues and organ de-velopments, as well as the vascularization of 
tumors. In recent years, mechanisms of (neo)angiogenesis in physiological conditions and pathologies have attracted 
the increasing attention of researchers. In the context of the central nervous sys-tem physiology, this issue is quite new; 
however, there is accumulating experi-mental and clinical evidence that brain plasticity includes not only phenomenon 
of neurogenesis, synaptic transmission, dynamic changes in the number and ac-tivity of synapses, various intercellular 
interactions, secretion of a wide range of neurotransmitters, gliotransmitters, cytokines and growth factors, but also 
specif-ic changes in local microcirculation, establishment and regression of microvessels, and altered permeability of 
the blood-brain barrier in active brain regions. Until now, mechanisms underlying the development and involution of 
blood vessels in the brain tissue are very scattered; however, some signaling pathways have been identified, in particular, 
those associated with the response of cells to hypoxia. Obviously, identification of such mechanisms is important for a 
better under-standing of brain development and plasticity, searching for new marker mole-cules and target molecules 
used for the accurate diagnostics, effective treatment and reliable prognosis of brain pathologies associated with insuf-
ficient or exces-sive tissue vascularization and aberrant vessel remodeling, as well as for adequate reproduction of cer-
ebral vascular networks within the in vitro microphysiological systems. 
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Introduction 

An interesting and still non-solved question 

in the physiology, neurology and neurobiology 

is the control of brain plasticity. Solving this 

question would be important for further pro-

gress in numerous interrelated fundamental and 

practi-cal problems: deciphering the mecha-

nisms and control of neuroplasticity in nor-mal 

and pathological conditions, correction of neu-

rological deficit in brain diseas-es, optimization 

of brain functioning at different stages of onto-

genesis, develop-ment of modern models of the 

brain in vitro, including in the brain-on-a-chip 

format. It is well-known that brain plasticity im-

plies not only changes in synaptic transmission, 

the landscape of interneuronal synaptic connec-

tions, and neurogen-esis processes, but also in-

cludes significant changes in local microcircu-

lation and (neo)angiogenesis. These events are 

realized within the neurovascular unit (NVU) 

with the participation of endothelium, glia, per-

icytes, and neurons whose coordi-nated activity 

controls selective permeability of the blood-

brain barrier (BBB) (Fig. 1). 

Blood vessels are formed de novo from hem-

atopoietic cells by means of vascu-logenesis (in 

the embryonic period of development). In the 

postnatal period, the mechanisms associated 

with the formation of new vessels (angiogene-

sis) are con-trolled by a wide range of mole-

cules with pro- and anti-angiogenic activity in 

var-ious tissues. Both processes involve endo-

thelial progenitor cells that are recruited from 

clonogenic niches and migrate to the angiogen-

esis zone followed by local differentiation into 

endothelial cells (Naito et al., 2020). Hypoxia 

and concomitant activation of hypoxia-induci-

ble transcription factor (HIF)-1α are recognized 

as key inducers of angiogenesis in various tis-

sues (Chertok et al., 2017). This leads to stimu-

lation of angiogenesis due to the action of vas-

cular endothelial growth factor VEGF (vascular 

endothelial growth factor), IGF-1 (insulin-like 

growth factor-1), PDGF (platelet-derived 

growth factor), FGF2 (fibroblast growth fac-

tor-2), angiogenin, and erythropoietin 

(Nefedova & Davydova, 2015; Elfayomy et al., 

2015). Usually, angiogenesis is balanced by 

vascular regression, but if this balance is dis-

turbed pathological processes associated with 

insufficient or excessive vascularization may 

occur (Chumak et al., 2020). 
 

General mechanisms of angiogenesis  

control 

Angiogenesis is characterized by the expan-

sion of the existing network of blood vessels, 

mainly due to the activity and migration of en-

dothelial cells and pericytes. Neoangiogenesis 

can proceed by the mechanism of branching of 

vessels (sprouting) or splitting of the vascular 

wall with the formation of two new ves-sels 

(splitting), it is accompanied by the following 

processes: degradation of the basement mem-

brane and extracellular matrix, migration and 

proliferation of en-dothelial cells which subse-

quently form new capillary tubes and basement 

mem-brane, and initiation of perfusion (Bishop, 

2015). Angiogenesis involves the in-teraction 

of endothelial cells with myeloid cells and per-

icytes as well as with tis-sues-specific cells like 

astrocytes in the brain. Their invasion and mi-

gration take place in order to initiate the devel-

opment of new blood vessels (Lugano et al., 

2020). Activity of these cells is sufficient to es-

tablish the local microenvironment enriched 

with soluble regulatory molecules acting at 

their receptors expressed in endothelial cells 

and pericytes. Under physiological conditions, 

angiogenesis is activated primarily to provide 

blood supply to developing tissues, as well as to 

restore damaged tissues. The growth of new 

vessels is a complexly coordinated process that 

requires sequential activation of endothelial cell 

receptors by numer-ous ligands (Verclytte et 

al., 2015). Metabolic demands of tissues, ex-

ceeding the perfusion capacity of existing ves-

sels trigger angiogenesis. The results of recent 

studies have confirmed this adaptive mecha-

nism in hypoxia and hypoglycemia (Mel- 
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incovici et al., 2018; Wierzbicki et al., 2019). It 

was initially demonstrated in tumor tissue that 

angiogenesis is associated with the implemen-

tation of the War-burg effect and an increase in 

the level of lactate in the extracellular space, ex-

pression of glycolytic enzymes, lactate and glu-

cose transporters (MCTs, GLUTs) (Salmina et 

al., 2014). All these data support the role of tis-

sue hypoxia in the in-duction of angiogenesis.  

In actively proliferative tissues, activation of 

glycolysis and angiogenesis is required for cells 

adaptation and survival (Acosta et al., 2018). 

However, similar events are also important for 

the induction of angiogen-esis in tissues with 

the prevalence on post-mitotic cells (for in-

stance, in the brain).  

Hypoxia-inducible transcription factor-1 

(HIF-1) is recognized as a main trig-ger of the 

angiogenesis program. Activity of HIF-1 has 

been well-described in numerous reviews, so, 

we will briefly recapitulate the most important 

issues. Several HIF isoforms whose degrada-

tion in cells is inhibited by hypoxia ensure cell 

survival by regulating the expression of more 

than 200 genes and corre-sponding proteins in-

volved in angiogenesis, erythropoiesis, apopto-

sis, energy metabolism, vasomotor control, and 

immunity (Wierzbicki et al., 2019; Elfayomy et 

al., 2015). Hypoxia stimulates apoptosis in both 

normal and neoplastic cells through changes in 

the expression level of the p53 transcription 

factor, genes of the bcl-2 family, HIF-1, and a 

number of other factors (Shemarova & 

Nesterov, 2019). For example, E2F8, a tran-

scription factor containing two DNA-binding 

domains promotes angiogenesis by stimulating 

transcription of the gene encoding vascular en-

dothelial growth factor in hypoxic cells (Kent 

& Leone, 2019). Hy-poxic tissue cells express 

a transcriptional protein dimer, HIF, consisting 

of two subunits (HIFa and HIFb). The HIFa 

subunit has several isoforms (HIF1a, HIF2a, 

HIF3a) that are able to respond to different lev-

els of oxygen with various time-dependence 

(Wierzbicki et al., 2019). HIF1a is better stud-

ied and its expres-sion was found in the cells of 

many tissues and organs where it functions as a 

regulator of oxygen homeostasis. Being ex-

pressed constantly, regardless of hy-poxia, it is 

important for several physiological processes 

that are not directly linked to hypoxia (Elfa-

yomy et al., 2015; Verclytte et al., 2015). 

HIF2a is found in embryonic vascular endothe-

lial cells, in kidneys, lungs, and catecholamine-

 
Fig. 1. Brain neurovascular unit and regulation of angiogenesis. Development of new mi-

crovessels is under the control of locally produced VEGF, IGF-1, Angiogenin, FGF2, Thrombos-

pondin-1, etc. 
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syn-thesizing chromaffin cells. In tumor cells, 

HIF2a expression is associated with the grade 

of malignancy and Ki67 expression 

(Wierzbicki et al., 2019). HIF3a is the least 

studied, its activity is observed in the brain, kid-

neys and lungs. It is be-lieved that HIF3a acta 

as a negative regulator of the activity of genes 

induced by hypoxia (Nefedova & Davydova, 

2015). Data on the interaction of HIF subunits 

are quite mosaic. The HIF1a subunit has a 

shorter half-life, therefore, its concen-tration 

under normoxic conditions is low (Teplyashina 

et al., 2021). It has been established that oxygen 

affects HIF1a in several ways. One of them is 

rapid deg-radation in the presence of a func-

tional von Hippel-Lindau (VHL) protein known 

as a tumor suppressor (Liu et al., 2018; Salmina 

et al., 2014). Increased expres-sion of HIF1a 

was found in tumors with VHL mutations (Me-

lincovici et al., 2018). Thus, overexpression of 

HIF1a has been confirmed in tumors of various 

localizations (Liu et al., 2018) and is associated 

with the expression of the gene of the mutant 

type of the p53 protein. It correlates with the 

degree of cell differentia-tion, angiogenesis, 

and is a negative prognostic sign in tumor pro-

gression (Wierzbicki et al., 2019). The molecu-

lar mechanism of HIF activity under condi-

tions not associated with tumor progression, 

such as inflammation, includes the activation of 

TLRs (toll-like receptors) due to MAPK- and 

NF-kB-mediated sig-nal transduction. The 

HIF-1A transcription factor regulates several 

pro-apoptotic genes, including Bcl-2 interact-

ing protein 3 (BNIP3) and stabilizing tumor 

sup-pressor p53 (Shao et al., 2018; Nefedova & 

Davydova, 2015). 

Several peptide growth factors act as regula-

tors of angiogenesis in tissues. Platelet growth 

factor PDGF-C has a proangiogenic potential, 

binds to its PDG-FRα receptor, and activates 

predominantly the PI3K-AKT signaling path-

way (Zhang et al., 2018; Liu et al., 2018). Due 

to the presence of a highly conserved cysteine 

motif, PDGF-C belongs to the PDGF/VEGF 

family (Salmina et al., 2014). PDGF has an N-

terminal CUB domain that blocks the binding 

of the C-terminal growth factor to its receptor. 

Plasmin and tissue plasminogen activator (tPA) 

activate PDGF-C (Verclytte et al., 2015) result-

ing in recruitment of endo-thelial cells, peri-

cytes, and smooth muscle cells. Expression of 

the growth factor PDGF-C protects macro-

phages from apoptosis, which, in turn, are a 

source of angiogenic factors (Acosta et al., 

2018). Dysregulation of the PDGF/PDGFR 

sys-tem, as well as constitutive activation of 

PDGFR or mutations that in-crease/decrease 

the activity of ligands and receptors, contribute 

to the formation of tumors (Chumak et al., 

2020). Fibroblast growth factors FGF1 and 

FGF2 bind to specific cell receptors FGF-R1-4 

and to heparan sulfate proteoglycans with ty-ro-

sine kinase activity, initiate receptor dimeriza-

tion and autophosphorylation by tyrosine ki-

nase/PKC. These events promote angiogenesis, 

proliferation, migra-tion and differentiation of 

cells (Nefedova & Davydova, 2015; (Liu et al., 

2018). It is noteworthy that pericytes surround-

ing endothelial cells and actively partici-pating 

in angiogenesis processes have a high level of 

expression of PDGFRs (Xiang et al., 2019). 

The role of vascular endothelial growth factors 

(VEGF-A, VEGF-B), angiopoietin-1, 2 (Ang1 

and Ang2), leptin, adiponectin, thrombos-pon-

din-1, angiostatin, inhibitors of plasminogen 

activator-1 in positive or nega-tive regulation of 

angiogenesis is well known (Bishop, 2015; 

(Chumak et al., 2020). In particular, angiogen-

esis is induced by such factors as VEGF, stro-

mal growth factor (SDF1), stem cell factor 

(SCF), and angiopoietin (Acosta et al., 2018). 

The initial stimulation of endothelial cell prolif-

eration is mediated by the VEGF family of fac-

tors that are heparin-bound proteins. VEGF-A 

which binds at VEGFR1 and VEGFR2 (also 

known as KDR in humans, or Flk1 in rats), 

hepa-ran sulfate, and heparin are the most po-

tent mitogenic and chemoattractant sig-nals for 

endothelial cells (Melincovici et al.,2018). Fi-

broblast growth factor FGF1 interacts with 

FGFR1 receptor, thereby stimulating angiogen-

esis (Elfayomy et al., 2015). Synthesis of FGF2 

and its release from endothelial cells can be 

caused by inflammatory mediators such as  

L-1β, NO, prostaglandin E2. FGF1 can also in-

hibit p53 activity by phosphorylation of serine 

at the 15th position and promote its degradation 
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(Manousakidi et al., 2018). There are cross-

roads between FGF2 and VEGF-A to stimulate 

angiogenesis: FGF2 increases vascular perme-

ability through VEGF-A (Shao et al., 2018; 

Nefedova & Davydova, 2015). The presence of 

a cross functional relationships between FGF, 

PDGF, and VEGF that are rele-vant for the reg-

ulation of angiogenesis has been demonstrated 

(Chae et al., 2017).  

Endothelial cells and pericytes are the main 

targets for all of the listed growth factors, cyto-

kines and metabolites (Chen et al., 2019). In or-

der for a mature ves-sel to form, only one endo-

thelial cell must become a terminal cell - a tip-

cell, un-like others that form stalk-cells. The 

growth of the vessel includes the selection of tip 

cells, their migration, proliferation of stalk 

cells, and, ultimately, stabilization of the vascu-

lar wall which is adjacent to perivascular cells 

of a non-endothelial nature (pericytes, astro-

cytes, etc.). Tip-cells are characterized by their 

position: they are located at the end of a grow-

ing vessel. These cells are mobile, invasive, 

highly polarized and have a large number of 

long processes that can increase in size and per-

ceive guiding signals coming from the micro-

environment which is important for their migra-

tion along the chemoattractant concentration 

gradient, thereby guiding the direction of the 

vessel growth (Margadant, 2020). Therefore, 

navigation is the main function of nonprolifer-

ating tip-cells (Fig. 2). Stalk-cells follow tip 

cells, and they actively proliferate, elongate 

processes, form gaps in the vessel for subse-

quent perfusion. During maturation, endothelial 

cells undergo some plastic changes. Competing 

for the leading positions, stalk-cells can be ac-

tivated and become new tip-cells (Eelen et al., 

2020). VEGF- and Notch-mediated signal 

transduction affects this conversion (Fernán-

dez-Chacón et al., 2021). For instance, VEGF-

C activates VEGFR-3 in tip-cells to enhance 

Notch signaling which promotes tip to stalk 

conversion of endothelial cells at the fusion 

points of the vascular processes (Zhao et al., 

2018). The interaction of VEGF with VEGFR2 

increases Dll4 expression in tip-cells. Notch 

 

 

 suppresses the tip cell phenotype by increasing 

and decreasing the expression of VEGFR1 and 

VEGFR2, respectively (Fig. 2) (Eelen et al., 

2020). In general, tip-cell selection, outgrowth 

formation, stalk-cells proliferation, and vessel 

stabilization are the key steps in angiogenesis 

(Lugano et al., 2020).  

Interactions between endothelial cells and the 

microenvironmental stimuli de-termines differ-

entiation of endothelial cells toward tip-or stalk-

cells (Ellis et al., 2009). There is a stable inter-

mediate state between tip- and stalk-cell pheno-

types when microenvironment could affect en-

dothelial cells selection and maturation (Chen et 

al., 2019). After completing these changes, tip- 

and stalk-cells become to be quite different in the 

expression profiles and metabolism. In particu-

lar, high glycolytic activity is necessary for the 

functional activity of endothelial cells, and when 

cells acquire a tip-phenotype, glycolysis is inten-

sified (Baratchi et al., 2017). The suppression of 

glycolysis contributes to the inhibition of angio-

gene-sis, and this suggests that the constant pro-

duction of lactate by endothelial cells is compa-

rable to the Warburg effect (Malinovskaya et al., 

2016). Shear stress in endothelial cells stimu-

lates glycolysis and oxidative phosphorylation in 

mito-chondria (Sun & Feinberg, 2015), although 

experimental data on this issue are controversial 

(Doddaballapur et al., 2015). In fact, high met-

abolic activity of en-dothelial cells itself forms 

a pro-angiogenic microenvironment in tissues. 

Even endothelial cells with obviously higher 

mitochondrial content (for instance, endo-the-

lial cells of cerebral microvessels) maintain en-

ergy supply due to extensive glycolysis (Sal-

mina et al., 2015). In addition, cerebral endo-

thelial cells are equipped with lactate transport-

ers (MCTs, monocarboxylate transporters) and 

lactate receptors (GPR81) that make them sus-

ceptible to the effects of lactic acid produced by 

other perivascular cells (pericytes or astro-

cytes). We have demon-strated before that stim-

ulation of GPR81 in brain microvessel endothe-

lial cells stimulates mitochondrial biogenesis 

which supports (neo)angiogenesis (Khilazhe-

va, et al., 2017). 
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Epigenetic mechanisms of angiogenesis 

regulation 

Long-term gene expression programs during 

angiogenesis are regulated by epi-genetic 

mechanisms such as DNA methylation and hy-

droxymethylation, histone modifications, and 

action of small non-coding RNAs. DNA meth-

ylation affects chromatin condensation and 

hence its accessibility to transcription factors 

and enzymes. This process is carried out by a 

group of enzymes called DNA methyl-transfer-

ases (DNMTs), which catalyze the transfer of a 

methyl group from S-adenosylmethionine to a 

cytosine residue present in CpG dinucleotides 

(Nara-yanan et al., 2018). One of the main epi-

genetic mechanisms by which gene ex-pression 

is regulated is a change in the methylation of 

cytosine nucleotides in the promoter region of a 

gene. Cytosine methylation changes the hydro-

phobic char-acteristics of DNA and inhibits 

binding of transcription activators or suppres-

sors (Goyal D & Goyal R, 2019). Basically, the 

degree of promoter DNA methylation is in-

versely proportional to the intensity of tran-

scription (Yang et al., 2014). 

The regulatory role of DNA methylation in 

angiogenesis was clearly shown by Goyal 

(Goyal D & Goyal R, 2019). They hypothesized 

that formation of endo-thelial capillary tubes in 

3D cultures is secondary to the changes in a 

gene pro-moter altered by methylation in hu-

man brain microvascular endothelial cells. As a 

result of genome-wide microarray and bioinfor-

matic analysis, the authors iden-tified genes 

with a high level of expression during the for-

mation of capillary tubes (VEGF, TP53, HGF, 

 
 

Fig. 2. The initial stage of angiogenesis in the brain. Selection and maturation of two types of 

endothelial cells. Gradient navigation and migration (provided by VEGF) is carried out by ter-

minal non-proliferating tip cells. Proliferation and formation of the lumen of the vessel occurs 

due to the activity of proliferating stalk cells. VEGF- and Notch- signaling determines the spe-

cialization of these cells and maintains the selected phenotype 
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ESR1, and CDKN1A). At the same time, hy-

permethylation of CpG sites suppresses FOSB, 

FZD7, HEY2, HSPA6, NR4A3, SELE, PTGS2, 

SMAD6, SMAD7 and SMAD9 that signifi-

cantly inhibit angiogenic transfor-mation as 

well as endothelial cells migration. 

The spatial organization of DNA affects the 

level of expression of angiogene-sis-inducing 

genes. Histone proteins form the scaffold on 

which DNA binds. Two units of each of the his-

tones H2A, H2B, H3 and H4 combine to form 

the main histone octamer. Chemical modifica-

tion of histone structure (acetylation, methyl-

ation, phosphorylation, ubiquitinylation, ADP-

ribosylation, deamination and proline isomeri-

zation) changes the charge associated with the 

histone molecule and, consequently, its interac-

tion with negatively charged DNA. Thus, these 

modifications alter the accessibility of tran-

scription factors and cofactors to his-tone-asso-

ciated DNA (He et al., 2018; Ihezie et al., 

2021). In particular, acetyl groups are attached 

to lysine residues present in histone proteins. 

This process is catalyzed by the enzyme histone 

acetyltransferase (HATs/KATs) – aHAT 

(acety-lates nucleosomal histones and promotes 

their transcription) and bHAT (acety-lates 

newly synthesized histones before their inclu-

sion into the nucleosomal com-plex). Within 

the nucleus, histone acetylation can be reversed 

by HDAC histone deacetylases, resulting in 

chromatin condensation and transcriptional re-

pression. Eighteen HDACs of 4 classes have 

been identified in mammals: I) HDACs locat-

ed in the nucleus (HDAC1,2,3,8); II) HDACs 

that run between the nucleus and the cytoplasm 

(HDAC4,5,6,7,9,10); III) NAD+-dependent 

proteins - sirtuins (SIRT); iv) HDAC11. 

Several experimental data suggest that his-

tone acetylation affects establish-ment of angi-

ogenic program in endothelial cells. Using bio-

chemical, pharmaco-logical and genetic ap-

proaches, Fath et al. have shown that acetyla-

tion of p300 (transcriptional coactivators) leads 

to inverse regulation of HIF-1α (Ellis et al., 

2009). Indirect regulation of HIF-1α through 

HDAC6 inhibition causes its degra-dation 

(Qian et al., 2006; Ikeda & Kakeya, 2021). 

HDAC5 is involved in VEGF signaling and 

gene expression (Bahl & Seto, 2021), whereas 

HDAC7 controls vascular integrity since defi-

ciency of this enzyme causes the death of ani-

mals in the embryonic period due to global vas-

cular destruction (Velasco-Aviles, et al., 2022). 

In last decades, there has been a growing in-

terest in the family of evolutionarily conserved 

proteins known as sirtuins (SIRT) acting in nu-

merous (patho)physiological processes (Carafa 

et al., 2016). SIRTs share a common  

NAD+-binding catalytic domain, sense the 

NAD+ levels in the cells, and act spe-cifically 

on different substrates depending on the biolog-

ical processes in which they are involved. As an 

example, neuronal SIRT1 plays an important 

role in the protection against Alzheimer's dis-

ease, Parkinson's disease, and Huntington's dis-

ease (Jeong et al., 2013) by exerting a neuro-

protective effect and participating in cell sur-

vival. The role of sirtuins in the regulation of 

NAD+ bioavailability in cells is also important; 

a functional relationship between nicotinamide 

phos-phoribosyltransferase (NAMPT) and 

SIRT1 has recently been shown. NAMPT is a 

therapeutic target against ischemic stroke by 

acting on vascular repair and neu-rogenesis. 

SIRT1-mediated deacetylation of NAMPT at 

K53 increases its activity (Yoon et al., 2015). 

SIRT2, the second member of the SIRT family, 

promotes neurodegeneration (Harting & Knoll, 

2010), thus, pharmacological or genetic in-hibi-

tion of SIRT2 blocks α-synuclein-mediated 

neurotoxicity. There are three mi-tochondrial 

sirtuins (SIRT3, 4, and 5), and SIRT3 protects 

cochlear neurons from oxidative damage during 

caloric restriction and in response to superoxide 

dis-mutase (MnSOD) activation in microglia 

(Rangarajan et al., 2015). The role of SIRTs in 

the regulation of angiogenesis is under exces-

sive assessment: SIRT1-mediated deacetylation 

of forkhead transcription factor Foxo1 sup-

presses its an-ti-angiogenic activity in endothe-

lial cells (Potente et al., 2007), SIRT1 inhibition 

reduced the hypoxia-driven accumulation of 

HIF-1α in mesenchymal stem cells able to show 

the angiogenic phenotype (Chiara et al., 2014), 

SIRT3 controls gly-colytic metabolism of en-

dothelial cells, thereby providing the mecha-

nism of angi-ogenesis regulation (He et al., 
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2019), SIRT6 prevents vascular aging (D'On-

ofrio et al., 2015). However, contribution of 

SIRTs to the regulation of brain angiogen-esis 

remains unclear and requires further investiga-

tions.   

Histone methylation in the nucleus is con-

trolled by histone methyltransferases and his-

tone demethylases. Methyl groups from S-ade-

nosylmethionine are trans-ferred to a lysine or 

arginine residue present in histones H3 and H4 

by histone methyltransferases. As a rule, H3 

methylation at the 4th (K4) or 36th (K36) ly-

sine residue activates transcription, while K9 

and K27 repress gene methylation (Chen & 

Riggs, 2011). Another histone methyltransfer-

ase, called the disruptor of telomeric silencing 

(DOT1L), catalyzes the methylation of H3K79: 

DOT1L inter-acts with the transcription factor 

ETS-1 to stimulate VEGFR2 expression, there-

by activating the ERK1/2 and AKT signaling 

pathways and promoting angiogen-esis (Duan 

et al., 2016).  

Non-coding RNAs (ncRNAs) is a group of 

non-translated RNAs with regulato-ry func-

tions. Depending on the length of the RNA, 

ncRNAs are divided into small (sncRNAs) and 

long (lncRNAs) subclasses. Small RNAs are 

typically of 18 to 35 nucleotides in size, while 

lncRNAs are over 200 nucleotides in length. 

Among sncRNAs, due to strong functional var-

iations, there are transfer RNA (tRNA), riboso-

mal RNA (rRNA), small nuclear RNA 

(snRNA), small nucleolar RNA (snoRNA), 

Piwi-interacting RNA (piRNA) (Stamatovic et 

al., 2019). It was experimentally confirmed that 

the target effect of ncRNAs on mRNA in the 

form of complementary antisense oligonucleo-

tides changes the expression level of tar-get 

genes controlling angiogenesis, namely 

VEGFA. Coupling of miR-9 mi-croRNA activ-

ity with neurogenesis and angiogenesis during 

brain development has been demonstrated 

(Madelaine et al., 2017; Coolen et al., 2013). 

There was a temporary increase in the cell pro-

 
 

Fig. 3. Epigenetic regulation of VEGF expression in cells 
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liferation associated with the reduction in the 

number of early-born neurons and increase in 

the number of late-differentiating neurons 

through inhibition of miR-9. miR-9 may di-

rectly target the transcription factors TLX and 

ONECUT to regulate VEGFA expression in 

perivascular cells, thereby affecting angiogene-

sis. Thus, miR-mediated regulation of transla-

tion in stem or progenitor cells could affect two 

mechanisms of brain plasticity – neuro-genesis 

and angiogenesis – within neurogenic niches. 

A decrease in microRNA activity does not 

always lead to activation of the tar-get gene. 

The opposite effect was registered for mi-

croRNAs miR-210, miR-296, which promote 

the migration of vascular endothelial cells and 

the formation of tubular structures under hy-

poxic conditions in vitro (Zeng et al., 2014; 

Feng et al., 2015). However, in this case, the 

corresponding microRNA is also a key fac-tor 

in increasing the level of VEGF in the tissue. 

In sum, a brief description of the epigenetic 

factors regulating VEGF-controlled angiogene-

sis is presented in Figure 3 and in the table (Ta-

ble 1). 

 

Cerebral angiogenesis and brain plasticity 

Vasculogenesis and angiogenesis are the im-

portant parts of brain develop-mental program. 

From the moment of birth to the 5th day of a 

rodent postna-tal life, the density of blood ves-

sels in the brain tissue increases (Uspenskaia et 

al., 2021) which is associated with the appear-

ance of neuronal connections. However, exces-

sive stimulation and repeated neuronal activa-

tion caused a de-crease in vascular density on 

the 15–25th days of postnatal life due to de-

crease in proliferation pf endothelial cells 

(Whiteus et al., 2014). Angiogenesis de-creases 

shortly after birth, since most cell migration 

pathways in the brain be-come largely inactive. 

An exception is the migration of neuroblasts/im-

mature neurons from the subventricular zone of 

the lateral ventricles to the olfactory bulbs or 

brain tissue lesions which remains active in 

adulthood (Voskresen-skaia et al., 2018).  

Similar mechanisms coordinate the estab-

lishment of vascular and neural networks. Sig-

naling molecules such as Nogo proteins, ne-

trins, ephrins, and others are involved in axonal 

guidance. They affect the growth of blood mi-

crovessels because they act as attractants or re-

pellents. For instance, in the postnatal brain de-

velopment, a membrane protein RTN4 (axon 

growth inhibi-tor) can act as a negative regula-

tor of angiogenesis (Coelho‐Santos et al., 

2020). This protein is expressed close to vascu-

lar terminal endothelial cells and their pro-

cesses. Genetic ablation or antibody-mediated 

neutralization of RTN4 in mice aged P4 or P8 

Table 1 

Epigenetic regulation of angiogenesis 

 

Epigenetic mechanism Outcomes 

DNA methylation - change in chromatin condensation; 

- inhibition of binding of activators or suppressors of transcription; 

- inhibition of angiogenic transformation, as well as migration of endothe-

lial cells; 

Modification of 

histone structure 

- change in histone charge and its interaction with negatively charged 

DNA; 

- change in the availability of transcription factors and cofactors to DNA; 

Histone methylation - activation of transcription of early genes of signaling pathways, promot-

ing angiogenesis; 

- neuroprotective/neurodegenerative effect and involvement in cell sur-

vival, neuropathology and expression of brain-derived neurotrophic fac-

tor; 

Action of non-coding 

RNAs 

- change in the level of expression of target genes, including VEGFA 

(miR-9, miR-210, miR-296 and others). 
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leads to a significant increase in the number of 

terminal endothelial cells on the 10th day of 

postnatal life and the appearance of new capil-

lary branches in microvessels. In the adult 

brain, the activity of angiogen-esis in the cere-

bral cortex and striatum is extremely low (Bo-

gorad et al., 2019). However, other studies sug-

gest that striatum, cortex and area CA1 of the 

hip-pocampus, subventricular zone of the lat-

eral ventricles are the loci of the most extensive 

angiogenesis throughout the life (Nemirovich-

Danchenko et al., 2019). 

Recently, extensive experimental and clini-

cal data have been accumulated confirming the 

involvement of the mechanisms of cerebral an-

giogenesis in the brain plasticity. Hippocampal 

vascularization supports the cognitive reserve, 

whereas suppression of hippocampal angiogen-

esis reduces the ability to learn (Kerr et al., 

2010; Perosa et al., 2020). Regular physical ac-

tivity, acting like a multi-stimulus (enriched) 

environment, promotes cerebral angiogenesis 

and an increase in cognitive reserve (Zimmer-

man et al., 2021). Recovery of lost func-tions 

after cerebral ischemia is accompanied by in-

tensification of neoangiogen-esis and migration 

of cells with proangiogenic activity to the le-

sioned area (Hatakeyama et al., 2020). Main-

taining the pool of neural stem cells and their 

recruitment to ensure neurogenesis is provided 

by changes in local microcircu-lation within the 

neurogenic niches of the brain, while functional 

hyperemia in the hippocampus is associated 

with an improvement in neurogenesis-depend-

ent learning (Shen et al., 2019). Controlled per-

meability of the BBB in microvessels within 

neurogenic niches is an important regulatory 

signal for stem and progenitor cells develop-

ment, microvascular scaffold and perivascu-lar 

astrocytes guide neuroblast migration from the 

niches to other brain regions (Hatakeyama et 

al., 2020). Secretory activity of endothelial 

cells of cerebral microvessels is important for 

ensuring the growth of neurites and synaptic ac-

tivity (Wu et al., 2017). Memory consolidation 

is partially supported by the so-called early cor-

tical angiogenesis which is necessary for neu-

ronal and syn-aptic memory allocation, 

whereas subsequent regression of the newly 

formed vascular bed has been detected (Pulga, 

2018). 

 

Angiogenesis in brain pathologies 

Many pathological conditions in the central 

nervous system are associated with aberrant an-

giogenesis. Brain aging and neurodegeneration 

are accompa-nied by serious changes in cere-

bral vessels (Wen et al., 2019; Gorin et al., 

2020). Vascular alterations occur even in the 

preclinical phase of the Alz-heimer’s disease 

before the development of cognitive impair-

ment and detecta-ble accumulation of beta-am-

yloid or appearance of hyperphosphorylated tau 

protein in the cerebrospinal fluid (CSF). These 

events are accompanied by the loss of structural 

and functional integrity of the BBB (Iturria-

Medina et al., 2016). In the progression of Alz-

heimer's disease, changes in the expression pro-

file of cerebral endothelial cells and markers of 

neuroinflammation are de-tected (Bell et al., 

2010; Salmina, et al., 2019). Interestingly, a de-

crease in the number of circulating endothelial 

progenitor cells in patients with Alzheimer's 

disease was previously considered as a mani-

festation of insufficient reparative processes in 

the brain tissue (Kong et al., 2011). However, 

cytostatic therapy aimed to suppress excessive 

cerebral angiogenesis restores the integrity of 

the BBB, prevents the progression of cerebral 

amyloid angiopathy and promotes the restora-

tion of cognitive functions in animals with ex-

perimental Alzheimer's disease (Singh et al., 

2021). Hypervascularization and the establish-

ment of new microvessels with increased BBB 

permeability are the characteristics of Alzhei-

mer's disease (Biron et al., 2011) as well as 

other types of chronic neu-rodegeneration. Un-

productive angiogenesis due to altered 

DLL4/Notch-mediated mechanism of lateral 

inhibition and suppression of gamma-secretase 

activity in endothelial cells contribute to the de-

velopment of neuroinflamma-tion in Alzhei-

mer's disease (Alvarez-Vergara et al., 2021).  

Systemic atherosclerosis affects the vascular 

wall of medium-sized and large arteries in the 

brain tissue. It associates with endothelial dys-

function and activation, monocyte/macrophage 

adhesion, activation and transendothelial mi-
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gration, excessive oxidative stress, lipid depo-

sition, aberrant extracellular matrix composi-

tion, smooth muscle cells migration and prolif-

eration, plaque neovascularization. In the areas 

of atherosclerosis, local environment (relative 

anoxia, inflammation, oxidative stress) induces 

the expression of proangiogen-ic factors that 

promote the establishment of new vessels from 

the pre-existing vasa vasorum (Michel et al., 

2007). Neovascularization provides supply of 

ox-ygen and nutrients, but further promotes the 

plaque progression. In addition, incomplete 

maturation of microvessel BBB leads to intra-

plaque hemorrhage and its rupture (Michel et 

al., 2014).   

Small vessel disease (SVD) is a cluster of 

pathologies with heterogeneous etiology and 

pathogenesis, affecting such elements of the 

vascular system of the brain as small arteries, 

capillaries, arterioles and venules. The develop-

ment of SVD is accompanied by decrease in the 

lumen in the affected vessels, as well as thick-

ening of their walls which prevents perfusion 

(Litak et al., 2020). Neu-roimaging features are 

white matter hyperintensity, dilated perivascu-

lar spac-es, lacunae, subcortical infarcts, mi-

crobleeds, and brain atrophy. Some studies in-

clude in this group certain pathologies such as 

Binswanger's disease, leu-koareosis, cerebral 

microbleeds, and lacunar strokes (Issac et al., 

2015). Defec-tive angiogenesis might be a part 

of SVD pathogenesis: development of endo-

thelial dysfunction contributes to SVD progres-

sion (Quick et al., 2021), induc-tion of angio-

genesis seen in animals with experimental mod-

els of SVD is a neuroprotective mechanism 

(Jiang et al., 2021), however, elevated levels of 

cir-culating endothelial progenitor cells and ex-

pression of VEGF-D have been found in hu-

mans with severe SVD (Kapoor et al., 2021), 

increased expression of bone morphogenetic 

protein 4 (BMP4) in cerebral pericytes results 

in exces-sive angiogenesis and astrogliogenesis 

in experimental SVD (Uemura et al., 2018). 

In stroke, reduction in perfusion causes is-

chemic damage, and a decrease in blood flow 

promotes biphasic vascular remodeling, includ-

ing angiogenesis. An increase in microvascular 

density due to angiogenesis correlates with bet-

ter clinical outcomes and recovery after is-

chemic brain injury (Ribo et al., 2011; Kang et 

al., 2020). An increase in the permeability of 

the BBB in the ventricu-lar system of the brain 

in stroke contributes to the formation of new 

multiple neurogenic niches and the intensifica-

tion of reparative neurogenesis (Lin et al., 

2015). Excessive vascularization and the estab-

lishment of highly permeable BBB accompany 

the development of epilepsy (Ogaki et al., 

2020). BBB breakdown and aberrant lactate-

mediated signal transduction in brain mi-

crovessel endothelial cells take part in the path-

ogenesis of neuroinflammation (Boitsova et al., 

2018). Autism is associated with persistent ab-

normal angio-genesis (Azmitia et al., 2016) and 

BBB breakdown (Fiorentino et al., 2016). Loss 

of BBB integrity is evident in depression 

(Dudek et al., 2020), and stimu-lation of hippo-

campal angiogenesis might be a part of antide-

pressant-mediated therapeutic effects in depres-

sion (Boldrini et al., 2012).   

In sum, aberrant angiogenesis and/or mi-

crovessel remodeling are the key mechanisms 

in the pathogenesis of neurodegeneration, is-

chemic brain injury, neuroinflammation, and 

neurodevelopmental disorders.  

 

Methods used for assessing angiogenesis 

Magnetic resonance imaging (MRI) is 

widely used to study the remodeling of cerebral 

vessels. In their study, Kang et al., use super-

paramagnetic iron ox-ide nanoparticles 

(SPION) as the contrast agent for simultaneous 

monitoring of the macro- and microcirculatory 

system, and their changes in ischemia caused by 

the middle cerebral artery occlusion in rats 

(Kang et al., 2020). High-resolution ultra-short-

term MR angiography with T1-contrast (UTE-

MRA) visualized remodeling of the size of the 

pial arteries and veins. The authors showed that 

morphological changes in vessels, including 

but not limited to ve-nous blood vessels, are di-

rectly related to the corresponding status of 

brain tis-sue edema in rats with ischemic stroke.  

A more general idea of the tissue structure in 

pathological changes in blood vessels after is-

chemic cerebral infarction is provided by an ac-

curate histological quantitative assessment of 
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microvessel density in the tissue. Brem (Brem 

et al., 1972) was the first to propose a quantita-

tive method for assessing the neovas-culariza-

tion of brain tumors. The method of quantitative 

assessment of angio-genesis in histological sec-

tions involves assessment of the area of vessels, 

their number, perimeter and length. The sim-

plest, inexpensive and most common method of 

staining histological sections is the Pickworth 

staining with hema-toxylin and eosin (Leung et 

al., 2013) or application of some other proto-

cols (Zadka et al., 2020; Garrido et al., 2021). 

Thomas Wälchli et al. proposed a method to 

show the correlation between the in vivo vascu-

lar conditions and angiogenic events in the 3D 

vascular network of the developing brain 

(Wälchli et al., 2015). The method is based on 

the use of markers such as Evans-Blue, isolec-

tin or laminin, and registration of both the struc-

ture of the vascular wall and the appearance of 

the dye in the perivascular space. Using confo-

cal laser scanning microscopy and stereological 

methods of analysis, the authors per-formed a 

detailed quantitative assessment of the 3D post-

natal cerebral vascula-ture in the context of per-

fused and non-perfused vessels (volume frac-

tion, length and number of vessels, number of 

branched points, and perfusion sta-tus) and ob-

tained some markers of angiogenesis-related 

events (the density of endothelial tip-cells, the 

number of filopodia). 

One of the methods for studying the micro-

vasculature and angiogenesis is immunohisto-

chemistry. The von Willebrand factor, 

CD31/PECAM-1, are the widely-used markers 

of mature endothelial cells, CD34 and CD133 

are the markers of endothelial progenitor cells 

(Table 2). Nestin and PDGFR are the markers 

of pericytes, s100β and AQP4 as markers of 

perivascular astroglia (Pusztaszeri et al., 2006). 

Combination of these markers provide reliable 

in-formation on the microvessel density and re-

modeling in the brain tissue. In ad-dition, sev-

eral markers of BBB structural and functional 

integrity like CLDN-5, ZO1, JAM, Pgp etc. are 

used. For instance, CD31 and CD34 are used to 

identify and assess the density of blood vessels 

in a tissue (Nefedova et al., 2016). Figueiredo 

et al applied and confirmed that labeling of 

blood vessels us-ing CD31 can be an important 

tool for assessing angiogenesis (Figueiredo et 

al., 2018). The von Willebrand factor (VWF), 

which at that time was called the FVIII-related 

antigen (Randi et al., 2018), is widely used to 

quantify blood ves-sels and angiogenesis, its 

expression in endothelial cells is enhanced by 

angio-genic factors, in particular, VEGF and 

FGF2 (Zanetta et al., 2000). 

To study the molecular mechanisms of angi-

ogenesis in vitro, 3D models are used when ca-

pillary-like structures are formed. This system 

is a unique model, as it makes it possible to 

evaluate the growth dynamics and migration 

rate of vascular cells, to identify the growth tra-

jectory and the nature of the bifurca-tion of ca-

pillary-like structures (Semina et al., 2015). 

Uemura and Gil et al. (Uemura et al., 2010; Gil 

& Del Río, 2012) confirmed the advantages of 

this method, among others, in the culture of 

small fragments of the brain tissue ob-tained 

from mouse embryos. The method makes it 

possible to simultaneously distinguish newly 

formed blood vessels in the same sample, to 

conduct simul-taneous immunofluorescence in 

combination with an analysis of the state of per-

fusion of the vascular network, provides an ac-

curate analysis of the 3D structure of vessels in 

the postnatal brain, and clearly identifies tip 

cells based on morphological criteria, as well as 

the possibility of combining with immu-noflu-

orescence using various other vascular markers. 

Other methods of molec-ular and systems biol-

ogy (polymerase chain reaction (PCR), mass 

spectrome-try) can be used for a deeper study 

of the cellular and molecular mechanisms of an-

giogenesis (Lee et al., 2019).  

The in vivo assessment of the permeability 

of BBB in pre-existing or newly formed mi-

crovessels can be performed with the following 

methods: 1) infrared spectroscopy with indocy-

anine green which has a fast clearance from the 

tis-sue; 2) high-resolution MRI with the assess-

ment of the accumulation of a gado-linium-

based contrast agents in the perivascular space; 

3) positron emission tomography with radiolig-

ands, for instance, with 2-amino-3C-isobutyr-

ate; 4) assessment of the accumulation of the 

dye (Evans Blue, sodium fluorescein, dextrans) 
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in the brain tissue after parenteral administra-

tion (only in animals) (Ganau et al., 2020; 

Ahishali et al., 2020). 

 

Conclusion 

Angiogenesis is an important and highly reg-

ulated process aimed to estab-lish new blood 

vessels in (patho)physiological conditions. In 

the brain, it is under the control of wide spec-

trum of pro- and antiangiogenic molecules 

whose expression is tightly coordinated in 

NVU/BBB cells. Aberrant angio-genesis con-

tributes to the pathogenesis of various brain dis-

eases (neurodegen-eration, neurodevelopmen-

tal disorders, brain ischemia, neuroinflamma-

tion), being the mechanism of altered brain 

plasticity. Further progress in decipher-ing the 

basis of cerebral angiogenesis will provide new 

approaches to enhanc-ing the cognitive reserve, 

correcting neurological deficits, creating the 

brain tis-sue modes in vitro, and designing new 

drug candidates. Application of in-formative 

protocols of cerebral microvessels visualization 

and functional anal-ysis would be helpful for 

the assessment of individual progression of 

brain pa-thology or efficacy of therapy. 
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