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Abstract. The three-dimensional structure of tumor tissue and particularly cell-cell and cell-extracellular matrix adhe-

sion is an important factor that can determine the phenotype of tumor cells. In this work, we have investigated the 

abundance profile of actin-binding adhesion proteins in human ovarian adenocarcinoma cell lines SKOV-3 and SKOV-

3.ip. We have investigated levels of total and superficially localized adherens junctions proteins E- and N-cadherin, gap 
junction protein сonnexin-43 and cell-extracellular matrix contacting integrin beta-1. Our results indicate a complete 
absence of epithelial marker E-cadherin, a low level of mesenchymal N-cadherin and high levels of connexin-43 and 
integrin beta-1. Modest superficial localization of the represented proteins was observed, indicating their mislocaliza-

tion. SKOV-3 cell line was characterized by higher levels of the total content of studied cell-cell contacts proteins and 
a lower level of superficially localized integrin beta-1, which is both considered to be associated with lower tumor 
aggressiveness. The revealed differences in the profile of adhesion proteins are in line with the accepted view on SKOV-

3.ip cell line having a more aggressive phenotype than that of SKOV-3. The revealed features of the total abundance of 
the adhesion proteins and their superficially localized pool made it possible to supplement the information on the nature 
of phenotypic differences between the studied cell lines.

Keywords: cell–cell contacts, cell-extracellular matrix contacts, cancer cell phenotype, adherens junctions, gap junc-

tions, integrin-based junctions. 
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SMT – somatic mutation theory 
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cation 

EGF – epidermal growth factor 

Bax – Bcl2 associated X protein 
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Introduction 

Contribution of the three-dimensional 

structure of the tumor to its development and 

drug resistance is now a cutting edge in can-

cer research. Thus the prevailing ‘somatic 

mutation theory’ (SMT) of carcinogenesis 

which declares that cancer stems from one 

compromised cell is now being revised and 

complemented by elements of ‘tissue organi-

zation field theory’ (TOFT) of cancer, which 

in turn suggests that the development of the 

tumor process lies in the disorder of the inter-

action between all of the participants of the 

tissue microenvironment (Soto, Sonnen-

schein., 2020; Neophytou et al., 2021). Dis-

turbance in cellular communication has been 

widely described for tumors of various loca-

tions and stages of development and is being 

considered as a potential target for various 

treatment approaches (Brücher & Jamall., 

2014; Song et al., 2019; Dominiak et al., 

2020).  

Communication within the tissue is medi-

ated by cell-cell contacts (adherens, tight, gap 

junctions and desmosomes) and cell-extracellu-

lar matrix (ECM) contacts (mainly integrin-

based) comprised by complexes of integral pro-

teins. Adherens junctions are comprised by cal-

cium-dependent proteins cadherins which or-

ganize in belt-like adhesion plaques thus 

providing the organization of the epithelial 

sheet and participate in maintaining its polari-

zation along with tight junctions and cell-ECM 

contacts (Harris & Tepass, 2010). Tight junc-

tions are comprised by caludins and occludin 
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which form the most prohibitive junctions 

strictly regulating paracellular transport (Tsu-

kita et al., 2001). Gap junctions constituted by 

connexins on contrary act as direct cell connect-

ors as they form hexameric transmembrane 

channels (Nielsen et al., 2012). Desmosomes 

are formed by desmogleins and desmocollins 

which are calcium-independent non-classical 

cadherins (Garrod & Chidgey, 2008). Integrin-

based contacts to ECM are dimers of various al-

pha- and beta-integrin subunits, where the spec-

ificity of adhesion is defined by the composi-

tion of a dimer (Takada et al., 2007). Concern-

ing intracellular connections of integral adhe-

sion proteins, they bind to various components 

of the cytoskeleton: desmosomes bind to inter-

mediate filaments (Hatzfeld et al., 2017), while 

proteins of adherens and tight junctions bind to 

the actin cytoskeleton (Campbell et al., 2017; 

Vicente-Manzanares et al., 2009). Emerging 

data testifies that gap junction proteins con-

nexins are also connected to actin cytoskeleton 

via adapter proteins which bind to specific sites 

on their cytoplasmatic C-tail (Herve et al., 

2007; Ambrosi et al., 2016). 

Actin cytoskeleton is recognized as one of 

the central components orchestrating cancer 

progression and metastasis (Galluzzi & 

Thomas, 2020 a,b), thus profile assessment of 

actin-connected adhesion proteins may be a rel-

evant tool in cancer research. Integral proteins 

in general are the first-line contributors to adhe-

sion and communication and in these terms 

their representation profile serves as a reflection 

of interactions in tumor microenvironment in a 

certain time point and becomes a potent charac-

teristic which is appropriate to rely on both in 

fundamental cancer research and drug effi-

ciency evaluation (Farahani et al., 2014; 

Kutova et al., 2020). In this study we focus on 

representative integral actin-binding proteins of 

adherens junctions, namely epithelial marker E-

cadherin and mesenchymal marker N-cadherin 

(Loh et al., 2019); gap junctions, namely con-

nexin-43 which is the most widely represented 

connexin in mammalian tissues (Bonacquisti & 

Nguyen, 2019); and integrin-based cell-ECM 

contacts, namely integrin beta-1, which is the 

most preferential partner in α-β integrin dimer-

ization and thus may be considered as the basic 

member of the majority of integrin-based con-

tacts (Hynes, 1992). A summary of the studied 

proteins and their common binding partners 

among adapter proteins are represented in 

Fig. 1. 

It should be noted that to date a considerable 

amount of data was obtained indicating mislo-

calization of adhesion proteins (Wang & Li, 

2014; Alaga et al., 2017; Seraya-Bareket et al., 

2020) which shifts cancer cells towards aggres-

siveness. Our work aims to investigate the ex-

pression profile and localization of actin bind-

ing integral adhesion proteins representing cell-

cell and cell-matrix contacts in two lines of hu-

man ovarian adenocarcinoma cells with differ-

ent aggressiveness. 

 

Materials and Methods 

Cell lines. Cells of human ovarian adenocar-

cinoma cell lines SKOV-3 and SKOV-3.ip 

were used. Cells were cultured in DMEM me-

dium containing 2 mM glutamine (PanEco, 

Russia), 10% (v/v) fetal bovine serum (Hy-

Clone, USA), 50μg/ml of Penicillin and  

50 μg/ml of Streptomycin (PanEco, Russia) at 

37 C in 5% CO2. For passaging, cells were de-

tached with Versene solution (PanEco, Russia). 
 

Cell preparation protocol to assess localiza-

tion of adhesion proteins. In order to perform 

flow cytometry analysis, monolayer culture 

was detached from the substrate by incubation 

with TrypLE solution (Thermo Fischer Scien-

tific, USA) for 20 min at 37 C in 5% CO2. 

Cells were fixed in 4% formaldehyde (Appli-

chem, Germany) for 20 min at room tempera-

ture to exclude a possibility of protein profile 

changes during the analysis. In order to assess 

the simultaneous superficial and intracellular 

abundance of studied proteins fixed cells were 

permeabilized with 0,02% Triton X-100 (VWR 

Life Science, USA) for 20 min at room temper-

ature. Cells intended for assessing the abun-

dance of superficially located proteins of inter-

est proceeded to staining directly after fixation. 

Cells were thoroughly washed with PBS to re-

move formaldehyde and Triton-X100 before 

staining. 
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Cell staining and flow cytometry analysis. In 

order to minimize non-specific binding, cells 

were blocked in a solution of 3% milk (Appli-

chem, Germany) in PBS for 1 h at room temper-

ature and incubated with antibodies specific to 

the proteins of interest and antibodies of corre-

sponding isotypic control according to manufac-

turer’s instructions. The following specific anti-

bodies were used: E-cadherin Monoclonal Anti-

body (67A4), FITC (Thermo Fischer Scientific, 

USA, Cat#A15757), N-cadherin Monoclonal 

Antibody (8C11), PE (Thermo Fischer Scien-

tific, USA, Cat#12-3259-42), connexin-43 Mon-

oclonal Antibody (CX-1B1), Alexa Fluor 488 

(Thermo Fischer Scientific, USA, Cat#138388), 

integrin beta-1 Monoclonal Antibody (TS2/16), 

PE (Thermo Fischer Scientific, USA, Cat#12-

0299-42). Excess antibodies were washed out 

from the specimens with 1% BSA (Sigma-Al-

drich, USA) solution in PBS and analyzed by 

flow cytometry using a CytoFlex S (Beckman 

Coulter, USA). Fluorescence of FITC, Alexa-

Fuor 488 and PE was excited with a 488-nm la-

ser and the signal was detected with 525/40 

(FITC, AlexaFluor488) and 585/42 (PE) band 

pass filters. 

Results 

Two ovarian carcinoma cell lines SKOV-3 

and SKOV-3.ip were used in this study. 

SKOV-3 cell line was obtained from the malig-

nant ascites of a 64-year-old Caucasian female 

(Hung et al., 1992) and SKOV-3.ip cell line 

was obtained from the malignant ascites of tu-

mor bearing nu/nu mice which were intraperi-

toneally inoculated with SKOV-3 cells.  

SKOV-3.ip cells were indicated to possess 

higher DNA synthesis rates, accelerated prolif-

eration, increased colony-formation in soft 

agar, formation of larger subcutaneous tumors 

and reduced survival of nu/nu mice bearing in-

traperitoneally inoculated tumors (Yu et al., 

1993; Dar et al., 2017).  

To evaluate the localization of adhesion pro-

teins in monolayer cultures in ovarian carci-

noma cell lines we have conducted flow cytom-

etry analysis of adhesion proteins participating 

in formation of cell-cell contacts, namely E-

cadherin and N-cadherin (adherens junctions), 

connexin-43 (gap junctions) and cell-ECM con-

tacts namely integrin beta-1. The abundance 

level of each protein of interest is represented 

by relative fluorescence (RF) value calculated 

 

Fig. 1. Summary of studied proteins: E-cadherin, N-cadherin (cell-cell adherens junctions); connexin-43 

(cell-cell gap junctions); integrin beta-1 (cell-matrix junctions) with common adapter proteins 
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as a ratio of mean fluorescence intensity of cells 

stained with antibodies specific to proteins of 

interest to mean fluorescence intensity of cells 

stained with antibodies of corresponding iso-

typic control. RF value equal to 1 indicates that 

no analyzed protein is present in the cells. 

 

E cadherin. The obtained data indicate that 

the studied cells do not possess E-cadherin at 

all; relative fluorescence values were equal or 

close to 1 (Figs 2, 6, 7). 

N-cadherin was represented at very low 

level in both cell lines. Along with that, pop-

ulation heterogeneity was detected: a consid-

erable part of the cells demonstrated the com-

plete absence of N-cadherin (Fig. 3). Only a 

modest part of total N-cadherin was super-

ficially located (Fig. 6). Of note, the total 

abundance of N-cadherin in N-cadherin-

positive cells was significantly higher in 

SKOV-3 cells in comparison to SKOV-3. 

ip cells (Fig. 7,B).  

 

 

 

Fig. 2. The distributions of SKOV-3 and SKOV-3. 

ip cells according to presence of total (A, upper plot) 

and superficially located (B, lower plot) E-cadherin. 

Cells were stained with E-cadherin-specific anti-

bodies and analyzed by flow cytometry 

 Fig. 3. The distributions of SKOV-3 and SKOV-3. 

ip cells according to presence of total (A, upper plot) 

and superficially located (B, lower plot)  

N-cadherin. Cells were stained with N-cadherin-

specific antibodies and analyzed by flow cytometry 
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Connexin-43 total representation was at a 

relatively high level both in SKOV-3 and 

SKOV-3.ip cell lines, at the same time similarly 

to N-cadherin, only a modest level of connexin-

43 was represented at the cell surface (not more 

than 20% of total amount) (Figs 4, 6) and also 

similarly to N-cadherin, connexin-43 was sig-

nificantly more abundant in SKOV-3 cell line 

compared to SKOV-3.ip (Fig. 7, B). 

 Integrin beta-1 was the most abundant of 

the studied proteins both in SKOV-3 and 

SKOV-3.ip cell lines and again only a part of 

the total integrin beta-1 content was superfi-

cially localized. Also the studied cell lines 

showed heterogeneity as a minor part of the 

population represented loss of integrin beta-1 

(Figs 5, 6). Statistically significant differ-

ences between the studied cell lines were de-

tected, moreover, the peculiar phenomenon 

was revealed for integrin beta-1: SKOV-3 cell 

line possessed higher total integrin beta-1 

level (Fig. 2,A) while superficially located in-

tegrin beta-1 prevailed in SKOV-3.ip cell line 

(Fig. 2,B). 

 

 

 

Fig. 4. The distributions of SKOV-3 and SKOV-3. 

ip cells according to presence of total (A, upper plot) 

and superficially located (B, lower plot) connexin-

43. Cells were stained with connexin-43 -specific 

antibodies and analyzed by flow cytometry 

 Fig. 5. The distributions of SKOV-3 and SKOV-3. 

ip cells according to presence of total (A, upper plot) 

and superficially located (B, lower plot) integrin 

beta-1. Cells were stained with integrin beta-1-spe-

cific antibodies and analyzed by flow cytometry 
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Discussion  
Intercellular contact proteins are usually 

considered to be tumor suppressors, but there is 
more and more conflicting evidence of their in-
volvement in the formation of an aggressive 
phenotype and triggering tumor progression 
and invasion. An intriguing potential reason of 
such controversy is the context in which these 
proteins function, e.g. a protein which is con-
sidered to be proliferation suppressor might 

drive cell invasiveness or motility (Moh & 
Shen, 2009; Tang et al., 2018; Mulkearns-Hu-
bert et al., 2020). 

In present work we have analyzed the total 
abundance and the abundance of superficially 
localized representative proteins of actin-con-
nected cell-cell and cell-ECM contacts in two 
ovarian carcinoma cell lines with different ag-
gressiveness. In case of adherens junctions we 
have showed that E-cadherin was absent in 

 

 

 

Fig. 6. The abundance of total and superficially located 

adhesion proteins in SKOV-3 (A) and SKOV-3.ip (B) 

cell lines. Expression levels of E-cadherin, N-cadherin, 

connexin-43 and integrin beta-1 denoted as relative fluo-

rescence values calculated as a ratio of mean fluores-

cence intensity of cells stained with specific antibodies to 

mean fluorescence intensity of cells stained with antibod-

ies of corresponding isotypic control. Data are presented 

as mean ± SD (n = 3). “*” indicates significant difference 

in RF between total and superficially located protein (Un-

paired t-test with Welch correction, p < 0.05) 

 

 Fig. 7. The abundance of adhesion proteins in ovarian ad-

enocarcinoma cell lines totally represented (A) and lo-

cated superficially (B). Expression levels of E-cadherin, 

N-cadherin, connexin-43 and integrin beta-1 denoted as 

relative fluorescence values calculated as a ratio of mean 

fluorescence intensity of cells stained with specific anti-

bodies to mean fluorescence intensity of cells stained 

with antibodies of corresponding isotypic control. Data 

are presented as mean ± SD (n = 3). “*” indicates signif-

icant difference in RF between protein abundance in 

studied cell lines (Unpaired t-test with Welch correction,  

p < 0.05) 
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both studied cell lines. Concerning N-cadherin 
the studied cell cultures showed heterogeneity 
as a part of the cells did not express N-cadherin 
and the rest of the population expressed N-cad-
herin at a relatively low level. Loss of E-cad-
herin, which is widely recognized as an epithe-
lial marker, triggers the Epithelial-to-Mesen-
chymal Transition (EMT) of cells and contrib-
utes to the development of an aggressive phe-
notype. During EMT, there is a switch from 
the synthesis of E-cadherin to the synthesis of 
N-cadherin, which is a mesenchymal marker 
and is involved in intracellular signaling pro-
moting invasion and metastasis (Gravdal et al., 
2007; Loh et al., 2019). It is worth noting that 
the cells of the studied lines are characterized 
by the formation of loose three-dimensional 
aggregates in vitro; which is in line with an as-
sumption of their mesenchymal state (Winner 
et al., 2016; Sokolova et al., 2019; Kutova et 
al., 2020).  

Currently, more and more evidence is accu-
mulating that EMT is not a binary process, but 
a continual one, implying a huge number of var-
iants of the intermediate states of the cell, when 
it can express epithelial and mesenchymal 
markers simultaneously, which contributes to 
the development of cancer plasticity (Sha et al., 
2019). It has been hypothesized and supported 
by mathematical modeling that such intermedi-
ate states can accelerate EMT and exacerbate its 
consequences (Goetz et al., 2020). The data on 
the intermediate position occupied by the 
SKOV-3 and SKOV-3.ip lines vary, because 
despite the fact that these lines are called inter-
mediate mesenchymal, this can mean both the 
simultaneous presence of E-cadherin and N-
cadherin (Rosso et al., 2017; Teng et al., 2015) 
or the absence of E-cadherin with presence of 
N-cadherin (Klymenko et al., 2017), which was 
observed in our work. Such inconsistency of the 
data might be due to the high plasticity of tumor 
cells, which results in subtle differences in the 
phenotype evoked by different cultivation con-
ditions. It should also be noted that the repre-
sentation of N-cadherin in our experiments was 
rather low. Simultaneous loss of adherens junc-
tions’ proteins has been described for very 
poorly differentiated hepatocellular carcinoma, 
which was accompanied by extremely low pa-

tient survival (Liu et al., 2015) and in excep-
tional cases of invasive lobular breast cancer 
characterized by tubular elements formation 
(Christgen et al., 2020). In addition, the ob-
served difference in the amount of total  
N-cadherin and superficially localized can be 
explained by the transition of N-cadherin into 
a soluble form, which has pro-angiogenic 
properties and is at high level detected in bi-
ological fluids of cancer patients (Derycke et 
al., 2006 a, b). 

According to the obtained data gap junction 
protein connexin-43 was represented at rela-
tively high level in both studied cell lines yet 
significantly prevailed in SKOV-3 cell line. 
Functional connexin-based gap junctions being 
properly organized provide Gap Junction Inter-
cellular Communication (GJIC), which in turn 
maintains coordinated work of the cells within 
the tissue. Thus, connexins are considered to 
hinder tumor progression via GJIC (Krutov-
skikh et al., 2002, Zefferino et al., 2019). An-
other plausible mechanism of connexin-medi-
ated tumor suppression is the participation of 
connexins in intracellular signaling interfering 
with proliferative and invasive signals (Aasen 
et al., 2019; Mulkearns-Hubert et al., 2020). 
Concerning tumor suppressing potencies of 
connexin-43 it is reported that it can inhibit pro-
liferation by affecting the Wingless-Integrated 
(Wnt)/β-catenin pathway (Shima et al., 2006), 
decreasing the activity of proto-oncogene tyro-
sine-protein kinase Src (acronym of ‘sarcoma’) 
or epidermal growth factor (EGF) (Herrero-
Gonzalez et al., 2010; Qui et al., 2016) or by 
triggering apoptosis via binding to pro-apop-
totic Bcl2-associated X protein (Bax) (Sun et 
al., 2012). Of note, our data indicate that the 
level of superficially localized connexin-43 did 
not exceed 20% of total abundance. It is possi-
bly due to the disrupted connexin-43 trafficking 
to plasma membrane. Translocation to the cyto-
plasm was reported for connexin-43 and may be 
mediated by Wnt signaling pathway (Hou et al., 
2019); it was also shown for other connexins 
(Krutovskikh et al., 1994; Thiagarajan et al., 
2018). Aberrant localization of connexins 
which was observed in our study is reported to 
be associated with the triggering of EMT 
(Crespin et al., 2016; Kotini et al., 2018). 
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The most abundant of all observed proteins 
was integrin beta-1. The majority of research 
testifies that high levels of integrin beta-1 are 
represented in tumor cells compared to normal 
epithelium (Min et al., 2020). Up-regulated in-
tegrin beta-1 is associated with increased cancer 
cell survival, proliferation, migration and col-
ony formation in vitro (Pardo et al., 2002; 
Chang et al., 2019) and with advanced stage of 
the tumor and lower life expectancy in patients 
(Lin et al., 2014; Lawson et al., 2010). Our data 
indicate that superficial localization of integrin 
beta-1 is low compared to total protein. It is in-
teresting to note that higher total abundance of 
integrin beta-1 was detected in SKOV-3 cell 
line, yet superficially localized integrin beta-1 
was more represented in SKOV-3.ip cell line. 
Superficially located integrins being activated 
are shown to promote tumors towards increased 
malignancy mainly via focal adhesion kinase 
(FAK) signaling axis (Yang et al., 2014; Zhang 
& Zou, 2015; Xu et al., 2017). 

The profile of adhesion proteins expression 
appears to be more adequate means of tumor 
phenotype identification compared to assess-
ment of individual proteins due to their com-
plex crosstalk and reciprocal regulation. For ex-
ample, it was shown that diapedesis-mediated 
tumor invasiveness was registered in tumors 
with simultaneous loss of E-cadherin and high 
expression of connexin-43 (Mol et al., 2007) or 
integrin beta-1 (Shu et al., 2013, Symowicz et 
al., 2007). It should be noted that protein ex-
pression and their representation on the cell sur-
face is a dynamic process which is highly de-
pendent on the interplay of microenvironmental 
context and ongoing physiological processes. 
For example, along with high expression of 
connexin-43, E-cadherin abundance can contin-

uously change over time during different 
phases of an invasion process (Mol et al., 2007; 
Xu et al., 2008). 

 

Conclusions 
In this work we have analyzed total content 

and superficially localized pool of adhesion 
proteins in two ovarian carcinoma cell lines. 
The absolute loss of epithelial marker E-cad-
herin and overall mislocalization of the rest an-
alyzed proteins and hence their impaired adhe-
sive function, allow us to speculate about mes-
enchymal characteristics of the studied cell 
lines. At the same time, we have detected het-
erogeneity of the studied cell cultures in terms 
of N-cadherin and integrin beta-1 abundance. 
This is in line with the inconsistency of pub-
lished data on SKOV-3 and SKOV-3.ip pheno-
type and thus may be a strong evidence of can-
cer cells plasticity even in controllable condi-
tions of laboratory maintenance. According to 
the obtained data SKOV-3.ip cell line pos-
sessed lower overall adhesion proteins abun-
dance which is in line with a mainstream notion 
that loss of cellular adhesion underlies tumor 
aggressiveness. At the same time higher repre-
sentation of superficially localized integrin 
beta-1 might be an additional sign of SKOV-
3.ip superlative aggressiveness. Our data may 
be useful to expand an understanding of the na-
ture of the exceeding aggressiveness of SKOV-
3.ip cell line in comparison to SKOV-3. 
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