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Abstract. Spontaneous activity is known to be a characteristic feature of the vast majority of the neocortical principal 

cells including neurons of the primary sensory areas. The question of how spontaneous activity interacts with perception 

and encoding of sensory information remains open. In the present study, pyramidal neurons of the mouse primary visual 

cortex were recorded extracellularly under urethane anesthesia and simultaneous single-channel EEG recording was 

performed. To evaluate orientation and direction selectivity of the recorded neurons, mice were presented with visual 

stimuli consisting of moving sinusoidal gratings of different orientations displayed on a monitor. We noted quite regular 

bursts of generalized brain activity that were manifested in the recorded neuron as bundles of action potentials accom-

panied with a distinctive EEG pattern. Clearly, whenever such spontaneous activity shows up during visual stimulation, 

it is considered as noise, which significantly compromises the characteristics of the neuron’s measured visual response. 

To eliminate this effect, we developed a machine learning-based algorithm that enables to identify EEG predictors of 

generalized spontaneous activity and then to exclude spontaneous (i.e. not evoked by visual stimulation) action poten-

tials from the recording. Our algorithm was shown to reliably detect action potentials that have been caused by general-

ized brain activity. Removal of action potentials of this origin from extracellular recordings obtained during visual stim-

ulation allows for a more adequate estimation of parameters of neuronal receptive fields, in particular their orientation 

selectivity. 
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List of Аbbreviations 

AP – Action potential 

EEG – Electroencephalogram 

V1 – Primary visual cortex 

SVM – Support Vector Machine 

OSI – Orientation Selectivity Index 

DSI – Direction Selectivity Index 

 

Introduction 

Brain never sleeps-even when the rest of the 

body seemingly does, central nervous system is 

constantly processing both internal information 

(somatic and psychical, including memory con-

solidation) and relevant external signals (McVea 

et al., 2016). It is notable that neural network ac-

tivity is able to propagate between brain regions, 

both horizontally (across cortex areas (Luczak et 

al., 2007) and vertically (e.g., stem-cortex influ-

ences (Krone et al., 2021). Widespread activity 

propagation involves areas that are presumably 

passive during sleep, for example primary visual 

cortex, which, as its name suggests, performs 

low-level feature analysis of incoming visual 

stimuli. Cortical spontaneous activity is viewed 

as an off-line mode of information processing 

(Luczak et al., 2007). In visual stimulation ex-

periments, when it is desirable to isolate neu-

ron’s responses to presented stimuli, spontane-

ous activity acts as background noise. To deal 

with it, usually average spontaneous firing rate 

is computed within a short preceding window. 

Then it is subtracted from the firing rate of the 

response (Mazurek et al., 2014). However, such 

approach is of little use in many instances, when 

spontaneous activity of V1 cell is highly irregu-

lar, coming and passing as bursts of action po-

tentials, similar to sensory-evoked activity. 

Therefore, there is a need to investigate whether 

advent of individual bursts can be predicted from 

general brain state. Specifically, in this study, we 

tried to retrieve information about spontaneous 

burst inception in a primary visual cortex neuron 
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from EEG recorded simultaneously from a dif-

ferent cortex region. We managed to achieve 

> 70% accuracy of prediction from wavelet 

transformed EEG features fed into SVM classi-

fier. Then, on visual stimulation recordings, 

classification of action potentials into “spontane-

ous” and “of other origin” was performed and 

the former were excluded, whereupon orienta-

tion selectivity index of the cell improved. Thus, 

we suggest that our algorithm can be utilized to 

clean extracellular recordings made during stim-

ulation from spontaneous bursts. 

 

Methods 

Animals. All experimental procedures in-

volving the animals conformed to the National 

Institute’s of Health Guide for the Care and Use 

of Laboratory Animals and were approved by 

the Institute’s of Higher Nervous Activity and 

Neurophysiology of RAS Ethical Committee. 

Adult C57Black/6J mice (1.5–4 month old,  

21–30 g) were anesthetized with urethane  

(0.7–1 g/kg body weight) intraperitoneally. Un-

der local lidocaine anesthesia, a metal fixator 

was attached to the exposed skull bone above 

the primary visual cortex (4.5 mm posterior,  

2.5 mm lateral to the Bregma) and the skull was 

penetrated with a thin syringe needle. 

EEG was recorded from a single stainless 

wire macroelectrode that was screwed into the 

skull bone above the left parietal area, and the 

reference silver wire electrode was placed 

above the cerebellum. 

 

In vivo electrophysiological experiments. 

Visual stimuli consisted of moving sinusoidal 

luminance gratings (spatial frequency of  

0.04 cycles/degree, speed of 2 Hz) of 12 orien-

tations, presented on a 19-diagonal LCD moni-

tor. Pseudorandom sequence was repeated in 30 

trials and included 12 presentations that lasted 

for two seconds each, with 3 seconds between 

the onsets of two subsequent stimuli. For each 

cell, 10–40 minute recording of pure spontane-

ous activity, without any sensory stimulation, 

was performed as well. 

Extracellular recordings were performed on 

eight cells, on four mice in total. Glass record-

ing pipettes were filled with HBSS buffer. Elec-

trodes were placed in granular and infragranu-

lar layers (0.4–0.7 mm deep). Electrode of  

4–12 MΩ was slowly descended through tissue 

until its resistance increased 1.5–2-fold upon 

cell contact set up. Responses were recorded by 

Multiclamp 700B amplifier (Molecular De-

vices, USA) with PClamp 10 software (Molec-

ular Devices, USA), and the output was filtered 

at 300–10,000 Hz and digitized at 20 kHz 

(Digidata 1550 Series, Molecular Devices, 

USA). Single-electrode EEG was recorded sim-

ultaneously using the same software. 

 

Wavelet transform of EEG. First, a training 

set was created as follows (al-Qerem et al., 

2020). 1.2 second long epochs were extracted 

from EEG and divided into two classes, “spon-

taneous” and “silent”. Each spontaneous epoch 

was centered around one of the action poten-

tials, and the only condition for the silent 

epochs was that there appeared no action poten-

tials during them. Then, for each epoch, a set of 

features was created, from a set of discrete 

wavelet transform coefficients for that  

EEG snippet, in seven frequency bands  

(78.1–156.2 Hz, 39.1–78.1 Hz, 19.5–39.1 Hz, 

9.8–19.5 Hz, 4.9–9.8 Hz, 2.4–4.9 Hz,  

1.2–2.4 Hz and < 1.2 Hz). Wavelet function we 

used was a fourth order symlet (PyWavelets 

package for Python (Lee et al., 2019). The 

transform was applied to a six second long EEG 

episode centered around each 1.2 s epoch. The 

features extracted were max and min values and 

their time coordinates, mean and standard devi-

ation of wavelet coefficients (for the first four 

frequency bands), and max, min and mean for 

the last three bands, resulting in a feature vector 

of length 39. Dataset was then balanced by ran-

dom exclusion of samples until the two class 

sizes became equal. Number of training sam-

ples varied in the range 100–1000 for all the 

cells. 

 

Support Vector Machine classifier. Then, the 

training set data were centered and scaled 

(mean substracted and the result divided by 

standard deviation of the set), split into training 

and test sets (70% and 30%) and the former fed 

into SVM classifier (Support Vector Classifier, 
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Scikit-learn package (Pedregoza et al., 2011)) 

with a radial basis function kernel, to perform a 

supervised training. The model was 5-fold 

cross-validated, with two parameters being op-

timized: regularization parameter (C = 5) and 

gamma (0.01–0.05). Then, classification of 

EEG recorded during stimulation was per-

formed, within a sliding 1.2 second window, in 

0.3 s steps. In this manner, for each datapoint 

we got four binary predictions (0, for the first 

class or 1, for the second) and calculated the av-

erage value (between 0 and 1), which was a 

conservative estimate of this point belonging to 

the second class of EEG episodes. Then, finally, 

we classified action potentials in the stimula-

tion recording into two groups: “spontaneous” 

and “of other origin”, based on this estimate, 

with a threshold of 0.5. Those action potentials 

classified as spontaneous were excluded from 

further calculations of corrected index values. 
 

Selectivity indices. To quantify the primary 

visual cortex neurons’ sensitivity to the stimu-

lus properties (orientation and direction of 

movement), for each cell, standard normalized 

selectivity indices were calculated, defined as 

OSI = (R_pref + R_null – (R_(orth+) + 

+ R_(orth-))) / (R_pref +  R_null ) (orientation 

selectivity index) and DSI = (R_pref – 

– R_null)/(R_pref + R_null) (direction selectiv-

ity index) (Mazurek et al., 2014), where R_pref 

is the response at the preferred orientation, as 

the best of all responses, R_(orth+) and 

R_(orth-) are the responses at the orientations 

that are orthogonal to the preferred one. Re-

sponse is calculated as evoked firing rate – the 

number of APs evoked by the stimulus divided 

by its duration. Indices’ change as a result of the 

cleansing procedure is measured as ΔDSI = 

=〖DSI〗_after –〖DSI〗_before, ΔOSI = 

=〖OSI〗_after –〖OSI〗_before, where “be-

fore” and “after” correspond to index values be-

fore and after the algorithm has been applied. 
 

Results 

Spontaneous bursts of APs in V1 are accom-

panied with a characteristic EEG pattern in the 

parietal cortex area. While recording from V1 

neurons, we monitored a single-channel EEG 

recorded from the parietal cortex. In absence of 

external visual stimulation, in most of the rec-

orded neurons we observed spontaneous activ-

ity in the form of regular bursts of APs. Inter-

estingly enough, these bursts tended to be ac-

companied with a characteristic EEG pattern 

(Fig. 1) that incorporates both high- and low-

frequency components. Its averaged general 

shape is shown in Fig. 2. 

 

EEG snippets can be reliably classified 

based on ongoing spontaneous neuronal activ-

ity. Assuming that these two phenomena are re-

lated and might have a common origin, we esti-

mated their interconnection. For each neuron, 

we trained a Support vector machine classifier 

to discriminate between “spontaneous” and “si-

lent” EEG snippets (see Methods), labeled so 

depending on whether each episode was accom-

panied with spontaneous activity. Discrete 

wavelet transform was applied to extract a 

small number of meaningful features from a set 

of frequency bands for each EEG episode, thus 

reducing the dimensionality. Symlet was cho-

sen for its shape being similar to the one of the 

EEG pattern (Fig. 2), and for its orthogonality 

property. SVM algorithms search for a hyper-

plane to separate the vectors of two classes, so 

that the margin is the largest possible. As there 

was a significant overlap between our two clas-

ses, maintaining the least false positive rate was 

paramount. A conservative separating border 

satisfied this requirement well. Radial basis 

kernel was preferred, as the data were not line-

arly separable. 

Average classification results are presented 

in Table 1. Our algorithm enabled to achieve 

good enough classification accuracies of more 

than 70%. According to PCA, most of the fea-

tures were evenly important for classification, 

so we chose to omit any further dimensionality 

reduction.  

Classification accuracy significantly 

dropped to near chance values, when we ran the 

trained model on the data recorded from a dif-

ferent animal. This suggests that the observed 

EEG patterns are unique across different sub-

jects. On the other hand, model achieved aver-

age classification accuracy of 62±3% when  
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Fig. 1. Spontaneous APs come in bursts often accompanied with a distinctive EEG “comb” pattern. An ex-

ample of extracellular recording of a single mouse V1 neuron (top), accompanied with EEG showing char-

acteristic “combs” (middle) and its Gauss wavelet transform (bottom). Dashed lines mark approximate 

bursts’ boundaries. Colorscale represents normalized absolute wavelet transform coefficient value 

 

Fig. 2. Averaged EEG shapes. Averaged 1.2 second long EEG 

epochs corresponding to either spontaneous bursts (“burst‐triggered 

average”, red), or silent periods (blue), for one of the analyzed cells. 

Shading covers one standard deviation. n = 1000 epochs. Here, a 

burst was determined as a sequence of action potentials in which the 

distance between two consecutive APs didn’t exceed 0.76 seconds 

(this value was calculated from the histogram of interspike intervals 

as the right boundary of the histogram’s main peak). The correspond-

ing epoch started 0.5 seconds prior to the first action potential of the 

burst. Silent epochs were randomly sampled from the between-burst 

periods. Averaged EEG signal at each time point was calculated as 

arithmetic mean of all the signals in the class 

 

Table 1 

EEG classification results 

 

 Precision, % Recall, % Accuracy, % Area under the ROC curve 

Class 0 (“spontaneous”) 73±5 68±2 
71±4 0.76±0.05 

Class 1 (“silent”) 69±5 74±6 

 

Average values and standard deviations are given. n = 8 cells 
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trained on another cell recorded from the same 

animal. It indicates that the effect of the excita-

tion source is indeed general and uniform 

across V1 cells, although it might change as an-

esthesia depth slightly varies with time. Be-

sides, there is no doubt, that each individual 

cell’s response to the same stimulus would be 

unique as it is modulated by local network in-

teractions.  

Then, we made an auxiliary algorithm to 

perform a continuous EEG classification within 

a sliding window, as described in Methods, on 

 
Fig. 3. An example of EEG analysis performed on stimulation data. Top: extracellular recording from a V1 

neuron, bottom: simultaneous EEG recording, on which analysis has been performed. Color scale repre-

sents the EEG classification results, according to which each data point is assigned to one of the two classes, 

with probability ranging from 0 (“spontaneous” class, red), to 1 (“silent”, blue). Light blue shading corre-

sponds to 2 second long stimulus (moving grating) presentations 

 

 

Fig. 4. Selectivity indices’ change after the cleansing 

procedure had been applied. Bars show the average 

change of direction selectivity index (DSI) (nonsignif-

icant change) and orientation index (OSI) (significant 

increase) values after exclusion of spontaneous action 

potentials. Individual results are indicated by black 

dots (n = 8 cells). Errorbars correspond to one stand-

ard deviation  
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the data that had been recorded during visual 

stimulation. An example result of such classifi-

cation is given in Fig. 3. Here, color scale en-

codes the certainty of prediction. We can see 

that our classifier is able to detect EEG patterns 

similar to those seen alongside spontaneous 

bursts. Specifically, low-frequency (the peak) 

and high-frequency (the descending “comb”) 

components are both necessary for detection. 

 
Orientation selectivity of the cell improves 

after the cleansing algorithm has been applied 
to the stimulation data. V1 neurons are known 
to be tuned to particular orientations of visual 
stimuli, that is each of them has a preferred 
stimulus orientation that elicits the greatest fir-
ing rate. As a matter of fact, this is why gratings 
or stripes are commonly used as stimuli. Simple 
cells of V1 are usually direction selective as 
well, meaning that their response at the pre-
ferred direction movement is higher than at the 
opposite one. Accordingly, for a particular cell, 
strength of its selectivity can be characterized 
by various measures, for example, OSI for ori-
entation and DSI for direction (for the mathe-
matical definitions, see Methods). 

To assess the effect of the cleansing proce-
dure, we calculated these two indices before 
and after it was applied for each cell. We found 
that OSI increased significantly (ΔOSI = 0.25, 
σ = 0.21, p = 0.0096 for one-sided t-test; p = 
= 0.22 for Shapiro-Wilk test for normality), 
while the change of DSI was not significant 
(ΔDSI = 0.02, σ = 0.17, p = 0.78 for one-sided 
t-test; p = 0.99 for Shapiro-Wilk test) (see 
Fig. 4). These results indicate that indeed, for 
most of the cells the apparent orientation selec-
tivity improves after the spontaneous activity 
has been excluded by means of the procedure 
we propose here. As for the direction selectiv-
ity, the apparent index values could both be 
greater or less than true values depending on 
whether the cell was simple or complex (we did 
not test that). However, we can trust the result-
ing change, as the orientation selectivity for 
these cells improved. 

 
Discussion  
General principles of network interactions 

in the brain remain elusive. In this study, we  
 

presumably uncovered the share of general 
influences that encompass both primary vis-
ual cortex and parietal cortex. Indeed, EEG 
features from the latter enabled us to predict 
a great deal of neuronal spontaneous activity 
that arises in the former. Often the character-
istic EEG pattern represented a slow wave 
crowned with descending high-frequency 
fluctuations.  

Similar EEG synchronization events had 

been documented by Steriade et al., 1993 (e.g., 

Fig. 6, Fig. 8a) in various cat neocortex areas. 

These authors showed that the slow rhythm is 

generated in the cortex, coexists with thalamic 

spindles and is modulated (not induced though) 

by the thalamus. Importantly, they also demon-

strated that in cats such slow EEG activity was 

not due to the effect of the anesthetic, including 

urethane. However, there is lack of similar data 

on rodents. 

Speaking of interconnections between 

spontaneous neuronal activities in different 

cortex areas, it is noteworthy that the said 

slow rhythms encompass all neocortical neu-

rons (Volgushev et al., 2006). We might ex-

pect to see a high degree of synchronization 

across the major part of the mouse cortex tis-

sue, since it is quite small. In our case, pre-

sumably, spontaneous activity and EEG 

rhythmical activity were both manifestation 

of the same phenomenon-regular outbreaks of 

synchronized slow neuronal activity (Ruiz-

Mejias et al., 2011). This assumption is sup-

ported by the fact that different V1 cells from 

the same animal are activated along with sim-

ilar EEG patterns. However, the trained 

model could not be successfully applied to a 

different cell in a different animal, but rather 

our algorithm should be trained for each rec-

orded mouse individually. Most certainly, it 

is due to the fact that the frequency content of 

the characteristic associated EEG pattern var-

ied significantly from one animal to another. 

These observations suggest that, despite hav-

ing some typical features for the condition, 

the underlying network activity is still unique 

for each particular animal. It might be charac-

teristic of the mouse as our experimental sub-

ject or of urethane anesthesia on rodents. 
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Despite the aforementioned variety of the 

data, the approach that we propose here proved 

to be efficient enough for all recorded animals, 

as evidenced by the improvement of neurons’ 

orientation selectivity index. Therefore, re-

moval of spontaneous action potentials from re-

cordings of neuronal activity using our algo-

rithm allows for a more adequate estimation of 

parameters of neuronal sensory inputs. 
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