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Abstract. Synchrony in neuronal networks plays a crucial role in the functioning of the brain. Stability of synchrony is 
most desirable to prevent any emergent desynchrony due to natural events, internal or external disturbances. The brain 
might have its own mechanism to repair its desynchrony, otherwise, some external procedure might be necessary to 
restore synchrony. We propose here a mechanism to realize robust synchrony in neuronal networks against parameter 
drifting. A selective addition of cross-coupling links over and above the conventional diffusive coupling links is found 
[Saha et al. (2017)] recently that makes dramatic improvements in the stability of synchrony of dynamical networks 
and that saves synchrony against breakdown due to parameter drifting. We apply the concept to realize globally stable 
synchrony in neuronal networks and the desired effect of robust synchrony and, present our numerical studies with 
examples of network motifs and a larger network of neurons and using the Hindmarsh-Rose (HR) [Hindmarsh and Rose 
(1984)] slow-fast neuron model for each node of the networks.
Keywords: Neuronal network, synchrony, cross-coupling and global stability, role of heterogeneity

Introduction

The brain is a network of interacting neurons [Sporns 
(2010, 2013)] where their exact connectivity is not yet 
clearly known. A complete understanding of the brain 
structure and its function is still evading researchers; 
however, continuous research efforts are exerted in 
this direction. Synchrony of neurons plays important 
roles in the functioning of the brain [Singer (1993)]. 
Desynchronization in a neuronal network can hinder the 
desired performances of the brain that may emerge for 
many reasons, due to disease as internal perturbation 
or external effect. Some diseases are beyond control and 
permanent; in some other cases, the brain may have its 
own repair mechanism to restore synchrony in a situation 
of its breakdown. A disease may cause a temporary or 
permanent loss of a communication channel between 
the neurons or drift in system parameters. A large 
external disturbance as a temporary perturbation may 
also destroy the synchrony. A question naturally arises 
how such a loss of synchrony is to be taken care of and 
the network be prevented from the disaster. This is a 
very complex problem yet to have a clear answer.

We address the problem from a dynamical system 
viewpoint, although simplistic, that the brain is a 
dynamical network consisting of an ensemble of 
neurons; each neuron is represented by the simple 
slow-fast HR model. Synchrony in such a neuronal 
network is assumed to prevail with its known structure 
or its connecting links between the neurons. The basic 
concept of synchronization in oscillatory systems 
such as the neuron is briefly introduced here first; it 
is known [Pecora and Carroll (1998); Boccaletti et   al. 
(2002); Pikovsky et al. (2003); Rosenblum et al. (1996)] 

that a diffusive coupling or a mutually interactive link 
is always necessary between any two dynamical units 
of a network and when the strength of the coupling link 
is increased above a critical value, synchrony emerges 
in a network. If all the dynamical units are identical, 
the network emerges into complete synchrony (CS) 
[Pecora and Carroll (1998); Pikovsky et al. (2003)] when 
oscillations in all the units have identical amplitude 
and phase. In a network of neurons, they all oscillate in 
complete harmony of amplitude and phase and, thereby 
perform a desired task. Otherwise, for nonidentical 
units, and for a weaker coupling strength, a type of 
phase synchronization [Rosenblum et al. (1996); Roy et 
al. (2003)] may emerge when the dynamical units have 
only phase coherence, but no amplitude correlation. All 
the neurons in a network oscillate in phase coherence; 
amplitude of oscillations is only different. If the coupling 
strength is weakened further below a threshold, 
synchrony is lost between the neurons having no 
correlation either in amplitude or phase. Furthermore, 
if the system parameters are largely distributed, then 
also synchrony is lost. All the neurons oscillate in a 
complete random manner; even a cessation of oscillation 
[Mirollo and Strogatz (1990); Saxena et al. (2012)] may 
occur. Using this general understanding of synchrony 
in a dynamical network whose connectivity is assumed 
known a priori, we start with a synchronous network 
under the simplest diffusive coupling interactions, 
and target on how to prevent a loss of synchrony for a 
drifting of a parameter or appearance of a large external 
disturbance. We start with an ideal situation when all 
the neurons are identical. Our target is to ensure a global 
stability of synchrony in the neuronal network and 
realize its robustness against parameter perturbation. 
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The desirable effect is a prevention of desynchrony due 
to drifting of system parameters or a disturbance.

We must mention here that the conventional diffusive 
coupling can only ensure local stability of synchrony 
[Pecora and Carroll (1998)], which is restricted to 
a subbasin of the coupled system. As a result, the 
synchrony may break in a situation of large perturbation 
due to a sudden external flicker or disturbance; the 
synchronous state may move outside the subbasin and 
can never return to synchrony once the disturbance is 
over. On the other hand, if a global stability of synchrony 
is somehow established, it covers the whole basin of 
the coupled system and hence it remains robust against 
external large disturbances. It is found, in our previous 
study with many dynamical models [Saha et al. (2017); 
Padmanaban et al. (2015)] that addition of selective cross-
coupling links over and above the diffusive coupling link 
can ensure global stability of synchrony in dynamical 
systems and its robustness against parameter drifting. 
We apply this strategy here for neuronal networks to 
achieve our desired target of global stability and other 
benefits. First, we take an example of a 2-node neuron 
model to illustrate numerically and analytically the 
conditions for realizing global stability of synchrony and 
to make it robust against drifting of system parameter 
and, then present numerical examples of 3-node, 4-node 
network motifs and a 16-node network to illustrate 
the constructive role of additional cross-coupling on 
synchrony. We specially choose the examples of network 
motifs since the network motifs are the building blocks 
of many real world networks, biological and physical 
[Milo et al. (2002)].

Two coupled neurons

Consider a simple 2-node HR system. As discussed 
above, addition of a selective cross-coupling link over 
and above the conventional self-diffusive coupling can 
make a dramatic improvement of synchronization. A 
systematic procedure is available [Saha et al. (2017)] to 
select the particular cross-coupling that can only help 
achieving our desired goal. We illustrate the main results 
analytically using the 2-coupled HR system as described 
by,
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The coupling scheme is schematically shown in the 
left panel of Fig. 1. Each neuron is represented by 
three vertically stacked squares (left panel) and by 
their corresponding state variables (xi, yi, zi) where i 
= 1, 2 corresponds to two neurons. The conventional 
bidirectional diffusive coupling link (solid black arrow) 
is represented by the coupling function (x2,1 − x1,2) and it 
is added to the x˙1,2 dynamics of the coupled units. This 

coupling function is called as a diffusive self-coupling 
whose strength is defined by 1ε . While a directed cross-
coupling link (dashed red arrow), (y2 − y1), is added only 
to the dynamics of x1-variable of the first oscillator and its 
strength is 2ε . Note that the coupling function involves 
the y1,2 variables while adding to the x˙1 dynamics. This 
is the reason why we call it as a cross-coupling by a 
comparison with the self-coupling. An alternative choice 
is possible, i.e., (y1 − y2) might be added to the dynamics of 
x2-variable of the second oscillator which does not affect 
the final results. Noteworthy that the choice of the cross-
coupling is unique and very specific, which is chosen 
from the linear flow matrix of the HR system. The general 
principle of this choice of the coupling functions (both 
the self- and the cross-coupling functions) is explained, 
in detail, earlier [Saha et al. (2017)]. We elaborate here 
how the addition of the cross-coupling can dramatically 
improve the synchrony of the 2-coupled HR system.

The selected coupling profile (diffusive self-coupling 
and cross-coupling functions) favors global stability of 
synchrony in the two-coupled neuron model. Analytical 
details are provided in the Appendix to derive the 
condition for the coupling strengths, 2

1 6aε ≤  and 

2 1ε = , when a globally stable complete synchronization 
(CS) state i.e., 1 2 ,x x= 1 2y y= and 1 2z z=   emerges 
for the coupled neurons. This condition explains that 
both the neurons oscillate in complete coherence of 
amplitude and phase. The amplitudes and phases of the 
neurons remain same all the time. The synchronous state 
is clearly globally stable as proved in the Appendix; it is 
stable for any choice of initial conditions from the basin 
of attraction of the coupled system. Numerical results 
are presented in the right panel of Fig. 1 for two identical 
neurons. The 2D projection of the synchronization 
manifold of identical neurons is shown in a black line. 
The red line also confirms a synchronous state, but it is 
a type of generalized synchronization (GS) [Abarbanel 
et al. (1996)] that emerges for a parameter perturbation. 
This is also globally stable which is never possible under 
a simple diffusive self-coupling. For illustration, we 
introduce a parameter mismatch i.e., (b1 ≠ b2), when the 
globally stable GS state defined by  ,   and   emerges (see 
Appendix). We note that x1,2 and z1,2 variables achieve an 
identical state similar to the CS case, however, y1 and y2 

x1
y1
z1

x2
y2
z2

Hindmarsh Ros
Figure 1. Two coupled neurons (schematic diagram at left panel). 
Synchronization manifold (black line for CS and red line for GS) is 
projected in the y1-y2 plane at right panel. Parameters are chosen in 
the chaotic dynamical regions for both the systems: a = 3, I= 3.25, 
d = 5, µ = 0.006, r = 4, c = 1.6, b1 = 0.5, b2 = 1. ε1 = 0.45 and ε2 = 1.

Hindmarsh Rose
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variables are not identical, but develop a linear relation 
where the linearity constant depends upon the ratio of 
the system parameters of the neurons. In the right panel 
of Fig. 1, a 2D projection of the GS manifold (red line) 
of the detuned systems shows a rotation from the CS 
manifold. A transition from CS to GS state simply occurs 
due to the parameter perturbation. This indicates that 
if a parameter of one neuron is drifted or changed, the 
CS state simply transits to the GS state without a loss of 
overall coherence or synchrony. One of the state variables 
of the perturbed neuron is either amplified or attenuated 
depending upon the value of the detuned parameter. 
The GS thus can be viewed as an amplitude response of 
the detuned system’s attractor [Saha et al. (2017)] under 
parameter perturbation. This phenomenon is further 
explained in the next section.

Network of neurons

We now extend our results to some examples of network 
motifs. Consider a network of N-oscillators, whose 
dynamics of the i-th node under both self- diffusive and 
cross-coupling is governed by,
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A={Aij} ϵ RN�N is the adjacency matrix that defines the 
topology or structure of any network, in general, via the 
self-coupling links.
B={Bij} ϵ RN�N is the connectivity matrix of the additional 
cross coupling links of the network; Aij= 1 and Bij = 1, if i-th 
node is connected to the j-th (j ≠ i) and 0 otherwise. B 
is selected from A: the directed cross-coupling links are 
connected from the maximum outdegree node to all 
the other nodes so that the network structure remains 
unaltered. 1ε   and  2ε   are the strength of self- and cross-
coupling links, respectively, between any two nodes 
whose values are analytically derived from Lyapunov 
stability of synchrony. 

1 1.9ε =  and 2 1ε =  are taken for the 3-, 4-node motifs 
and the 16-node network. 

We consider a 3-node motif first as shown in the 
upper left panel of Fig. 2 with three self-coupling links 
(black arrows), two directed links and one bidirectional 
link. The addition of two directed cross-coupling links 
(red dashed arrows) is suggested by our proposed 
strategy [Saha et al. (2017)] that makes synchronization 
globally stable and robust to parameter perturbation. 
Accordingly, we change Aij and Bij in Eq. (2) to define the 
dynamics of the 3-node motif. In upper right panel, the 
2D projection of the attractors of three nodes are drawn 
for different values of b1 = 1, b2 = 2 and b3 = 3 in black, 
red and green, respectively, which depicts increasing 
enlargement of the attractors along the yi direction. 
The enlargement increases with positive detuning of 
parameters in the nodes (node 2 and 3). For three identical 
nodes, all the attractors collapse on the black attractor 

when a globally stable CS in the motif is established 
(analytical proof is not presented here). For all three 
different nodes, an overall coherence is maintained 
between the three nodes; three different attractors (black, 
red and green) with different amplification constant are 
seen for positive detuning of the parameters. This state 
is defined as the GS state and it is also globally stable. 
Thus parameter mismatches in three nodes do not break 
the synchrony. Lower panel shows the corresponding yi 
time series of three nodes where all the oscillations are 
perfectly in phase, but different in amplitude depending 
upon the value of the detuned parameter of a particular 
node. Note that other state variables x1,2,3 and z1,2,3 remain 
identical similar to the example of two coupled neurons 
given in the previous section. Results support our desired 
target that the 3-node motif is globally stable in a CS state 
by the addition of the cross-coupling links when they 
are all identical. For all perturbed nodes, represented by 
their different parameters, the motif transits to a GS state 
which is also globally stable; there is no loss of overall 
synchrony.

The adjacency matrix A and the connectivity matrix
B are given for the 3-node 

motif,
0 1 0 0 0 0
1 0 0 ;  1 0 0
1 1 0 1 0 0

A B
   
   = =   
   
   

and for the selected 4-node motif,

0 1 1 0 0 0 0 0
1 0 1 0 1 0 0 0

;  .
1 1 0 0 1 0 0 0
1 1 1 0 1 0 0 0

A B

   
   
   = =
   
   
   

2 3

1

Figure 2. A 3-node network motif (upper left panel). Black arrows 
for self-coupling links and red arrows for cross-coupling links. 
Upper right panel shows 2D phase portraits in the xi-yi plane 
of three neurons for b1=1, b2=2 and b3=3 in black, red and green, 
respectively. Lower panel shows yi  time series of three neurons.
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Similarly, for a 4-node 

motif shown in the left panel of Fig. 3, we follow the 
same strategy of applying the cross-coupling links 
(red dashed arrows). From the beginning, we assume 
that all the nodes are perturbed by their parameters  
(i=1, 2, 3, 4). On the right panel, the synchronization 
hyperplanes of the detuned oscillators (blue, green and 
red) against the identical state (black line) are presented. 
A comparison clearly shows that the synchronized 
attractors are gradually enlarged with increasing 
value of the parameter . The 4-node motif attains a GS 
state that remains globally stable. The color arrows 
indicate the transverse direction to the synchronization 
hyperplanes, which clearly shows their rotational effect 
with increasing parameter mismatch. We repeat that all 
the nodes collapse to the synchronization hyperplane in 
black when they are identical and attain a globally stable 
CS state, as described above for previous two examples.

The effect of globally stable synchrony and its 
robustness to parameter perturbation is also noticed in 
a larger network with 16-node as shown in the upper 
panel of Fig. 4. The original network is defined by its 
nodes and bidirectional self-coupling (black links) 
which is assumed synchronous for a coupling strength 

1ε  (=1.9) larger than a critical value. However, if we 
detune the parameter of any one of the nodes, say, b6 of 
node-6 (blue node), with respect to the other nodes, the 
synchrony in the network is lost. By adding one directed 
cross coupling link (red dashed arrow) from any of its 
neighbors (say, from node-12 to node-6), the synchrony 
is restored, which is shown in the lower panel of Fig. 4. 
Synchronization in the network is monitored by defining 
an error,

2 2
1 12

( ) ( ) (z z )N
i ii

err t x x
=
 = − + − ∑ , 

where N is the network size. err(t )≠0 means no 
synchronization. The synchronization error (err) is 
large before adding the cross-coupling link ( 2 0ε = ) 
and becomes 0 when the cross-coupling link is added 
( 2 1ε = ). Addition of a cross-coupling link restores 
synchrony immediately.

We are yet to prove its global stability. In fact, a 
transition from the original CS state (before addition of 
the cross-coupling link) to a GS state (after the addition) 
is also seen, but we do not elaborate it here. We present 
here only the constructive role of a cross-coupling link 
that is clear from our numerical result.

4

2 3

1

Figure 3. A 4-node network motif (left panel). Solid (black) 
and dashed (red) arrows represent self- and cross-coupling 
links, respectively. Right panel: projection of synchronization 
hyperplanes. Color arrows show rotation along the transverse 
direction to their respective hyperplanes. Parameters are b1=1, 
b2=2, b3=3, b4=4, respectively, for black, blue, green and red 
hyperplanes. 1 1.9ε = and 2 1ε = .

Conclusion

We exemplified here the constructive role of selective 
addition of cross-coupling links over and above the 
conventional diffusive coupling links in neuronal 
networks to improve the conditions of synchrony so 
that it can sustain under external disturbances, large 
perturbations or parameter drift with time.

We proposed that establishing a global stability of 
synchronization can save a neuronal network from 
a breakdown of synchrony, to an extent, from large 
external disturbance. The addition of cross-coupling 
links as tested earlier for quite a few network motifs 
of many dynamical models helped achieve the global 
stability of synchrony in the network and furthermore, 
maintain an overall coherence among all the nodes when 
a parameter of any one or more nodes is perturbed.

We provided analytical and numerical proof in 
favor of our propositions in a 2-node coupled neurons, 
numerical examples of a 3-node, a 4-node network 
motifs and a 16-node random network. We showed how 
addition of cross-coupling links realized global stability 
of synchrony and its robustness against parameter 
perturbation. Each node of the network is represented 
by the HR neuron model. The global stability of 
synchrony was maintained for identical nodes as well as 
nonidentical nodes. The synchrony was complete with 
identical amplitude and phase for the identical case; this 
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Figure 4. Upper panel shows schematic diagram of a network. 
Node-6 (blue node) is perturbed while all other nodes have identical 
parameters. To restore synchrony only one directed cross-coupling 
link (dashed red arrow) is added to node-6 from a neighbor node-
12. In the lower panel, time series of the synchronization error 
(err) shows that in absence of the cross-coupling link ( 2 0ε = ), 
synchrony is lost when node-6 is perturbed (b ≠ b6 = 2). At t ≥ 
3000, one directed cross-coupling link ( 2 1ε = ) is added from 
node-12 to node-6, synchrony is restored (err = 0) in the network.
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CS state transited to a GS state for nonidentical nodes, 
in other words, parametrically perturbed nodes. One 
or more state variables of the perturbed nodes showed 
amplitude response (either amplified or attenuated 
depending upon the amount of detuning from the other 
nodes). We must mention that this is a very simplistic 
representation of the real problem in a neuronal network. 
We use the dynamical system approach to propose a 
purely theoretical solution to address the problem.
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Appendix: Global stability analysis of synchronization 
for two nodes
The error functions

[ ]T
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of the systems Eq.(1) evolves as,

3
2

1 2

2 2
1 1 2 2

3 2
4 4

(1 ) (1 )
,                                        (3)

x
x x p x p y z x y

y y

z x z

ee ae e e e e e e e

e b dx b dx e
e re e

ε ε

µ µ

= − − + − − −

= − − − −

= −







Where, 1 2pe x x= +  so that 2 2
1 2 x px x e e− = and 

3 3 2 2
1 2 ( 3 ).

4
x

x p
ex x e e− = +
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we consider a Lyapunov function, 
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To satisfy the condition, we derive the roots of the 
equation,
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aε ≤  Thus ( , ) 0x zV e e′ <  is satisfied 

when 2 1ε = and 2
1 / 6aε ≤  and this implies 

1 2x x=  and 1 2z z=  is asymptotically stable as t→∞.

Substituting the condition in Eq.(3) and assuming 
identical systems 1 2( )b b= , the error dynamics 

y ye e= −  is found when,
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for 2
1 6aε ≤ and 2 1ε = . Under this condition, 

the CS state 1 2x x= , 1 2y y= and 1 2z z=  becomes 
globally stable.
Now we consider the effect of heterogeneity on the 
stability of CS state by detuning the parameter ( 1 2b b≠ ). 
As the induced heterogeneity is not effecting the Eq.(4) 
and the related condition, hence the stability, hence the 
stability of 1 2x x=  and 1 2z z=  is still preserved. After 
detuning, the equation of ye  from Eq. (3) becomes,
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From (9), the received error dynamics is * * ,y ye e= −  

where * 1
1 2

1
y

be y y
b

= −  

is the modified error function. Accordingly, the 
Lyapunov function is redefined in terms of the modified 
error function whose time derivative is

2
4 2
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4
x z
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which ensures globally stable synchronization.
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