
Opera Med Physiol 2016 Vol. 2 (2): 103-111    103

Leszek Kaczmarek. MMP-9 in synaptic plasticity

MMP-9 in Control of Synaptic Plasticity: a Subjective Account

Leszek Kaczmarek*

Nencki Institute , Warsaw, Poland.
* Corresponding e-mail:  l.kaczmarek@nencki.gov.pl

Abstract. Matrix metalloproteinase 9, MMP-9 is an extracellularly operating enzyme that has been demonstrated as an 
important regulatory molecule in control of synaptic plasticity, learning and memory. Either genetic or pharmacological 
inhibition of MMP-9 impairs late phase of long-term potentiation at various pathways, as well as appetitive and spatial 
memory formation, although aversive learning remains apparently intact in MMP-9 KO mice. MMP-9 is locally translated 
and released from the excitatory synapses in response to neuronal activity. Extrasynaptic MMP-9 is required for growth 
and maturation of the dendritic spines to accumulate and immobilize AMPA receptors, making the excitatory synapses 
more efficacious. Animal studies have implicated MMP-9 in such neuropsychiatric conditions, as e.g., epileptogenesis, 
autism spectrum disorders, development of addiction, and depression. In humans, MMP-9 appears to contribute to 
epilepsy, alcohol addiction, Fragile X Syndrome, schizophrenia and bipolar disorder. In aggregate, all those conditions 
may be considered as relying on alterations of dendritic spines/excitatory synapses and thus understanding the role 
played by MMP-9 in the synaptic plasticity may allow to elucidate the underpinnings of major neuropsychiatric disorders.
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Synaptic Plasticity: a Concept

The term “synaptic plasticity” has been introduced by 
Jerzy Konorski from the Nencki Institute in 1948, in his 
book: “Conditioned reflexes and neuron organization”. 
The idea was based on long-standing concept, originally 
proposed by Ramon y Cajal, as Kandel et al. (2014) have 
recently recalled: “…the cellular connectionist approach, 
which derived from Cajal’s idea that memory is stored 
as an anatomical change in the strength of synaptic 
connections (Cajal, 1894). (In 1948 Konorski renamed 
Cajal’s idea synaptic plasticity [the ability of neurons to 
modulate the strength of their synapses as a result of use 
(Konorski, 1948)].”
     For a long time, starting from 70-ties and discovery 
of long-term potentiation of synaptic efficacy (LTP), 
the “synaptic plasticity” term was mainly used by 
electrophysiologists. However, nowadays, both 
anatomical, physiological and even its molecular 
meanings are widely accepted. In a broad sense, 
synaptic plasticity refers to modifications of synaptic 
efficacy within vast neuronal network of the brain that 
processes in malleable way incoming information to 
produce behaviors that change because of the associated 
past stimuli and their reinforcing value. 
   Synaptic plasticity has thus become a useful description 
for underpinnings of such physiological phenomena 
as learning and memory, as well as critical periods of 
cortical postnatal development, regenerative response 
to neuronal injuries and a host of neuropsychiatric 
conditions, including epileptogenesis, development of 
addictive behaviors, schizophrenia, depression or autism 
spectrum disorders, to name some prominent examples. 
   Especially noticeable is plasticity of excitatory 

synapses and harboring them dendritic spines. Their 
plasticity apparently underlies LTP and LTD (long-term 
depression) of synaptic efficacy, as well as silencing/
unsilencing of synapses and accompanying changes 
in AMPA/NMDA receptor ratio, all detected by 
electrophysiological means (Malenka, Bear, 2004). At 
the structural level, parallel phenomena include changes 
in the dendritic spine density, shape and size. The 
spines are typically classified as either small or thin of 
filopodial or stubby or mushroom (Engert, Bonhoeffer, 
1999; Matsuzaki et al., 2004; Sala, Segal, 2014; Nishiyama, 
Yasuda, 2015). In general, the mushroom ones are 
believed to be the most mature, with greatest numbers 
of glutamate receptors and high AMPA/NMDA receptor 
ratio. As these receptors are located at the region of so 
called postsynaptic density (PSD), easily discerned 
by the electron microscopy approach, the size of PSD 
correlates with synaptic efficacy, along the area/volume 
of the spine head. Furthermore, larger, more efficacious 
synapses are characterized by specific protein content, 
defining their molecular signature.  

MMP-9: an Extracellular Protease

MMP-9, matrix metalloproteinase-9 is a protease that 
operates predominantly extracellularly. It belongs to 
a larger family of enzymes (metalloproteinases) that 
together with other similar molecules form an abundant 
class of metzincins (including also astacins, ADAMs, 
ADAMTSs, etc., Rivera et al., 2010; Vandooren et al., 
2013). To make the researcher’s life harder, all those 
enzymes are somewhat similar in structure, although 
rapidly evolving, what in aggregate makes very 
difficult to obtain specific antibodies towards individual 



104    Opera Med Physiol 2016 Vol. 2 (2): 103-111  

Leszek Kaczmarek. MMP-9 in synaptic plasticity

members of the group. Furthermore, the enzymes are 
quite promiscuous against the substrates, cleaving in a 
tube many different proteins, leading to a very serious 
problem of finding specific inhibitors of individual 
enzymes. Finally, the levels of MMP-9 in the «naive» 
brain are dramatically low and they markedly increase 
only upon appropriate stimulation, however, of various 
nature, ranging from inflammation to synaptic plasticity. 
Moreover, since activation of MMPs usually requires 
their partial cleavage to remove a propeptide that covers 
the enzymatic active site, the enzymes work in cascades 
with one activating another, to activate yet another, and 
so on. This means that always we have to deal with and 
to distinguish between several enzymatic activities in a 
given cellular response. Thus, it has to be said with very 
strong emphasis that studying MMP-9 (as well as its 
cognates) demands to use simultaneously a variety of 
approaches, e.g., to detect mRNA, protein and enzymatic 
activity in parallel, all of those by various techniques, to 
be relatively assured that indeed MMP-9 is present and 
functional (see Vafadari et al., 2016). 

MMP-9 in Synaptic Plasticity, Learning and 
Memory

Probably the first indication for a possible role of 
MMP-9 in brain physiology comes from our studies on 
kainate-evoked neuronal cell loss and epileptogenesis 
(Szklarczyk et al., 2002). Until then, multiple studies 
implicated MMP-9 in pro-neurodegenerative, 
pathological responses, easily associated with excessive, 
tissue-detrimental proteolysis (Yong et al., 1998; Yong, 
2005, Lo et al., 2002). Since peripheral injection of kainate 
produces CA1 and CA3 hippocampal cell loss, along, 
e.g., with similar damage of the entorhinal cortex (EC), 
observing enhanced MMP-9 after kainate came as no 
surprise. Nonetheless, it was very unexpected to see 
selective MMP-9 increase in the hippocampal dentate 
gyrus (DG), as opposed to CA1 and CA3, where very low 
levels of MMP-9 were noted (Szklarczyk et al., 2002). This 
finding could, however, be explained by neuronal and 
synaptic plasticity that occurs specifically in this brain 
area, as granule cells of DG lose both their input from 
EC and output (CA3) and, in result, produce aberrant 
synaptogenesis on themselves (that may contribute to 
subsequent epileptogenesis, Zagulska-Szymczak et al., 
2001). Even more surprising was our discovery that 
increases in MMP-9 in dendritic tree area of DG concern 
not only the protein and enzymatic activity, but  also 
mRNA, suggestive of its translocation towards synapses 
that were undergoing plastic reorganization. In result, 
we have put forward a hypothesis of possible role of 
MMP-9 in dendritic remodeling and synaptic plasticity, 
as well as of local, dendritic/synaptic translation of MMP-
9 during plasticity (Szklarczyk et al., 2002). 
 Experimental support for this hypothesis was  
published a few years later. In 2006, Nagy et al., as well 
as Meighan et al. demonstrated by various means that 
MMP-9 was indispensable for late (over half an hour) 
phase of hippocampal (CA3-CA1) LTP, as well as for 

hippocampal learning and memory (contextual fear 
conditioning, water maze), as shown unequivocally with 
MMP-9 knockout (KO) mice, along other less specific 
means. Furthermore, increases in MMP-9 protein and 
enzymatic activity levels were also demonstrated (Nagy 
et al., 2006; Meighan et al., 2006). Soon thereafter, these 
observations were extended to other experimental 
systems of LTP, learning and memory that all involved 
the hippocampus (Bozdagi et al., 2007; Nagy et al., 2007; 
Okulski et al., 2007; Wright et al., 2006; 2007; Conant et 
al., 2010; Wojtowicz, Mozrzymas, 2010; Huntley, 2012; 
Tsilibary et al., 2014). In contrast, formation of aversive 
memories that relies on Lateral Amygdala (LaA) does 
not require MMP-9 activity (Nagy et al., 2006; Knapska 
et al., 2013), and LTP might be evoked with no alterations 
on the external capsule-LaA pathway, even when MMP-
9 is missing (Gorkiewicz et al., 2014). On the other hand, 
appetitive learning and memory, as well as LTP from 
LaA to Basal Amygdala (BA) and from BA to medial 
Central Amygdala (mCeA) misses the lasting phase 
(over 20 min), when MMP-9 activity is not available 
(Knapska et al., 2013; Gorkiewicz et al., 2014). Therefore, 
it is of note that MMP-9 is not universally mandatory for 
synaptic plasticity, learning and memory. Nevertheless, 
activity of this molecule is an obligatory component 
for specific forms of those phenomena, especially in 
the hippocampus. An important role of MMP-9 in 
synaptic function underlying postnatal and even adult 
cortical plasticity has also been shown for the visual and 
somatosensory cortex (Szklarczyk, Kaczmarek, 2005; 
Spolidoro et al., 2012; , Kaliszewska et al., 2012; Verslegers 
et al., 2013; Kelly et al., 2015). Similarly, requirement for 
MMP-9 has also been demonstrated for chemical LTP 
(cLTP) in hippocampal cultures (Niedringhaus et al., 
2012; 2013: Szepesi et al., 2013; 2014). 

Local Translation of MMP-9

We have also followed the hypothesis of local translation 
of MMP-9 at/around activated excitatory synapses. It 
should be noted that our other studies clearly pointed 
to MMP-9 presence on dendritic spines, and around 
postsynaptic areas of excitatory synapses, selectively, as 
opposed to non-detectable MMP-9 at either presynaptic 
domains or GABA-ergic synapses (Wilczynski et al., 
2008; Gawlak et al., 2009). Konopacki et al. (2007), 
using fluorescent in situ hybridization combined with 
immunofluorescent protein detection, reported on a 
patchy MMP-9 mRNA accumulation in DG dendrites 
in response to kainate treatment. This result reinforced 
the idea of MMP-9 mRNA being translocated, after 
kainate, towards excitatory synapses. Dziembowska et 
al. (2012) and Janusz  et al. (2013) provided a number of 
experimental data clearly showing that indeed MMP-9 
mRNA can undergo local synaptic translation to produce 
the protein, after activation of excitatory synapses. These 
experiments have also revealed that MMP-9 production, 
release and synaptic availability after synaptic activation 
occurs within a few minutes following treatment with 
glutamate (see also Michaluk et al., 2007). 
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MMP-9 in Structural and Functional Synaptic 
Plasticity: the Mechanisms

The evidence for pivotal role of MMP-9 in structural 
plasticity of dendritic spines comes from hippocampal 
cultures and slices, as well as the brain in vivo (see 
Dziembowska and Wlodarczyk, 2012; Stawarski 
et al., 2014; Vafadari et al., 2016 for review). Two 
major observations have been made. First, excessive 
availability of MMP-9 produces elongation and 
thinning of the spines (Bilousova et al., 2009; Michaluk 
et al., 2011). On the other hand, physiologically and 
locally available MMP-9 evokes conversion of small 
spines to larger, more efficacious mushroom ones 
(Wang et al., 2008; Szepesi et al., 2014). We have recently 
explained this apparent paradox, by finding that the full 
function of MMP-9 requires first its activity, followed 
by subsequent inhibition, exerted physiologically by 
TIMP-1 (tissue inhibitor of matrix metallproteinases-1, 
Maganowska, Gorkiewicz et al.).
  We have also found that excessive MMP-9 in transgenic 
rats with neuronal overexpression of the enzyme 
(Wilczynski et al., 2008) results in higher, than in the 
wild-type rats, proportion of silent synapses and lower 
AMPA/NMDA receptor ratio, along with impaired LTP. 
Treatment with MMP inhibitors in those transgenics 
normalized (i.e., enhanced) LTP as well as unsilenced 
the synapses and finally resulted in increased AMPA/
NMDA receptor ratio (Maganowska, Gorkiewicz et al.). 
  Using hippocampal cultures subjected to cLTP we have 
found that this form of synaptic plasticity correlates 
with growth of small spines into larger mushroom ones, 
concomitantly with synaptic accumulation of GluA1 
AMPA receptors that are at same time less mobile at 
the synapses.  All these major attributes of synaptic 
plasticity were lost when cLTP treatment was carried 
under MMP inhibition, i.e., neither spine growth, 
nor GluA1 accumulation and immobilization at the 
synapses could be observed under such conditions 
(Szepesi et al., 2014). 
   In vivo, Sidhu et al. (2014) observed that MMP-
9 KO mice display larger spine head areas in the 
hippocampus at 1-2 weeks postnatally (later on, as 
the authors found, this value becomes the same as 
in the wild type animals). Interestingly,  Aujla and 
Huntley (2014) found that levels of MMP-9 peak 
in the hippocampus more or less at the same time. 
Murase et al. (2014) showed that MMP-9 KO mice have 
unaltered spine density in the hippocampus of adult 
animals, however, there is increase in proportion of 
mushroom spine on the expense of thin ones. Kelly et 
al. (2015), while studying ocular dominance plasticity 
in the mouse visual cortex, observed no change in the 
morphology of existing dendritic spines in MMP-9 KO, 
however, spine dynamics were altered and KO mice 
showed increased turnover of dendritic spines over 
a period of 2 days. Fragkouli et al. (2012) constructed 
mice overexpressing MMP-9 and reported on increased 
spine density in the hippocampus and somatosensory 
cortex after behavioral training of adult animals. 

Synaptic Targets of MMP-9: the Misleading 
Name - MMP-9 does not Affect ECM but 
Cleaves Synaptic CAMs Instead

It may appear, intuitively, obvious that MMP-9 should 
cleave components of the extracellular matrix (ECM) 
surrounding the synapses. In fact, Tsien (2013) has 
proposed that such a cleavage may relieve the synapses/
dendritic spines from local environmental constraints 
limiting their growth, any by this virtue allowing them 
to undergo plastic changes supporting learning and 
memory. It should be noted that disruption of ECM may 
indeed affect synaptic plasticity (Frishknecht et al., 2009; 
Dityatev, Rusakov, 2011; Soleman et al., 2013; Tamura et 
al., 2013).  However, although possible role in MMP-9 
in ECM remodeling has been suggested by studies on 
the cerebellum, no clear MMP-9 substrate has emerged, 
and in fact we have failed to demonstrate that MMP-9 
cleaves a suspected substrate, tenascin-C (Foscarin et al., 
2011; Stamenkovic et al., in press and unpublished data). 
Similarly, it remains as an attractive, though unproven 
possibility that MMP-9 might cleave CD44 that may 
anchor hyaluronic acid-based ECM at the neuronal cell 
membrane. 
     Notably, treatment with excessive exogenous MMP-9 did 
not produce any gross alteration of ECM in hippocampal 
cultures (Michaluk et al., 2009). Furthermore, no ECM 
proteins surrounding synapses have been identified as 
MMP-9 substrates. In fact, most of such substrates belong 
to the category of cell adhesion molecules (CAMs, Bajor, 
Kaczmarek, 2013; Conant et al., 2015; Shinoe, Goda, 2015). 
Even more interestingly, all of them are CAMs that might 
be found located postsynaptically. The group includes: 
β-dystroglycan, ICAM-5, neuroligin-1, SynCAM2 
(synaptic cell adhesion molecule-2 also known as necl-
3) and nectin-3 (Michaluk et al. 2007; Tian et al., 2007; 
Peixoto et al., 2012; Kelly et al., 2014; van der Kooij et al., 
2014; Stawarski et al., 2014b). Most importantly, all of those 
proteins may form trans-synaptic adhesive apparatus 
with their presynaptic binding partners (β-dystroglycan 
and neuroligin-1 with neurexins, nectin-3 with nectin-1, 
ICAM-5 with ICAM-5, SynCAM2 with SynCam1). Other 
neuronal MMP-9 substrates identified to date are collapsin 
response mediator protein-2  (CRMP-2, Bajor et al., 2012), 
NGF (Bruno Cuello, 2006)  and pro-BDNF (Mizoguchi et 
al., 2011). 
  Considering trans-synaptic adhesive apparatus as 
a major MMP-9 target and taking into account other 
aforementioned information, one may suggest that 
following glutamate stimulation, especially by NMDA 
receptors, MMP-9 is released from small dendritic spines 
around postsynaptic domains of excitatory synapses. 
Next, MMP-9 destabilizes synaptic structure by breaking 
trans-synaptic connections through limited cleavage 
of postsynaptically originating proteins bound to their 
presynaptic partners. This way, the postsynapse and its 
dendritic spine carrier  are allowed to expand and maybe 
search for a new presynaptic partner. As soon as MMP-9 
is inhibited by endogenous TIMP-1, the pre-postsynaptic 
connection is (re-)established, however in a modified, 
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possible more efficacious form. Such a scenario is in a 
perfect agreement with the available experimental data 
and provides a good explanation for MMP-9 pivotal role 
in the synaptic plasticity, learning and memory.   
   However, the molecular mechanisms delineated above, 
although plausible are not proven yet. Thus, either 
alternative or complementary modes of MMP-9 function 
in synaptic plasticity have to be considered. Especially 
intriguing is partial cleavage of pro-BDNF to produce its 
mature form (Mizoguchi et al., 2011) as well repeatedly 
described mediation of MMP-9 synaptic effects via 
integrins, in particular integrin β1 (Nagy et al., 2006; Wang 
et al., 2002; Michaluk et al., 2011; Niedringhaus et al., 2012).

MMP-9 as Executor of c-Fos Function in Synaptic 
Plasticity, Learning and Memory?

Our research interest in MMP-9 has been spurred by 
the previous studies on c-Fos. In the late eighties gene 
expression in learning was discovered, when rapid and 
transient c-fos mRNA accumulation was demonstrated 
in the brain following glutamate injection, induction 
of LTP and behavioral training (Kaczmarek et al., 1988; 
Maleeva et al., 1989; 1990; Kaczmarek and Nikolajew 
1990; Tischmeyer et al., 1990, Nikolaev at al., 1991; 
1992 a,b; Bialy et al., 1992; Kaczmarek, 1992, 1993a,b). A 
plethora of other studies confirmed and extended those 
findings to multiple instances of plasticity, as well as 
learning and memory phenomena (Kaczmarek, 2002). 
Importantly elevated c-fos expression was observed 
only when the animals were learning new task, but not 
when vigorously performing already learned behavior 
(Nikolaev et al., 1992b). 
   To get an insight into mechanisms controlled by c-Fos 
protein that could explain its role in the brain, we turned 
to its only recognized molecular function, i.e., being 
active as transcriptional regulator, as a component of 
AP-1 transcription factor. After extensive search of 
c-Fos/AP-1 regulated genes in activated neurons, we 
have provided extensive evidence for TIMP-1 being 
such a target (Jaworski et al., 1999). This, in turn, shifted 
our attention to MMP-9 as being targeted by TIMP-1. 
Interestingly, numerous evidence outside the nervous 
system suggested that also MMP-9 might be regulated 
by c-Fos/AP-1 (Kaczmarek et al., 2002). In fact, we have 
also shown that this is the case also in the brain, after 
behavioral training of fear conditioning and in BDNF-
activated neurons in culture (Ganguly et al., 2013; 
Kuzniewska et al., 2013). I would even dare to say that 
TIMP-1 and MMP-9 are the best documented c-Fos/AP-1 
gene targets in stimulated neurons. Thus, considering 
very abundant, although still largely circumstantial, 
evidence implicating c-Fos in synaptic plasticity in 
learning, one may hypothesize that c-Fos role in these 
phenomena might be executed via MMP-9 and TIMP-1. 
A following molecular scenario might be even considered 
here. During learning experience, glutamate activates 
NMDA receptors to release MMP-9 and TIMP-1 to 
control the synaptic plasticity as described above. Since 
both proteins are released outside the cell and cannot be 

recuperated, there is a need to replenish them. MMP-9 
activity, e.g., by converting pro-BDNF to its mature form 
(mBDNF) produces a signal that through TrkB receptors 
and ERK kinases is delivered to SRF transcription factor 
that is the major upregulator of c-fos gene expression in 
activated neurons. Next, the protein product, c-Fos in a 
form of AP-1, enhances transcription of MMP-9 gene. 

MMP-9 in Neuropsychiatric Disorders: a Case of 
Aberrant Synaptic Plasticity?

Besides being pivotal for physiological synaptic 
plasticity, as documented above, MMP-9 has also been 
implicated in aberrant plasticity that may contribute to 
a variety of neuropsychiatric conditions (Reinhard  et 
al., 2015; Vafadari et al., 2016). The evidence for such a 
statement comes from both the studies on experimental 
animals, as well as human tissue. A particular strong 
case is presented here by epileptogenesis (Wilczynski et 
al., 2008; and for review: Lukasiuk et al., 2011; Vafadari 
et al., 2016). Similarly, addiction to substances of abuse 
was linked to MMP-9 (Smith et al., 2014; 2015; Mash et 
al., 2007; Brown et al., 2007; 2008; Conant et al., 2011; 
Samochowiec et al., 2010; Mizoguchi et al., 2007a; b). 
Furthermore, Lepeta and Kaczmarek (2015), reviewing 
the existing literature, have found a number of findings 
highly suggestive of a role of MMP-9 in schizophrenia.  
Finally, functional role of MMP-9 has been demonstrated 
in Fragile X Syndrome (FXS) that offers a very interesting 
example of autistic conditions derived from a single 
gene mutation (Fragile X Mental Retardation 1 Protein, 
FMRP). Bilousova et al. (2009) was the first to show that 
FMRP KO mice displayed increased MMP-9 activity and 
then Janusz et al. (2013) found that local translation of 
MMP-9 is FMRP-controlled. Similarly, Gkogkas et al. 
(2014) found that the eukaryotic translation initiation 
factor P-eIF4E and MMP-9 expression were both 
elevated in the brains of human FXS patients and in 
FMRP deficient mice. Furthermore, Bilousova et al. (2009) 
observed dendritic spine elongation in neuronal cultures 
that were derived from FMRP KO, a phenomenon that 
could be normalized by application of minocycline, 
which inhibited the enzymatic activity of MMP-9. 
Minocycline treatment also reduced anxiety in FMRP 
knockout mice (Bilousova et al., 2009) and reversed the 
deficit in ultrasonic vocalizations (Rotschafer et al., 2012). 
Finally, Sidhu et al. (2014) crossed MMP-9 KO mice with 
FMRP KO mice, to alleviate all of the major symptoms 
of FXS that were observed in FMRP KO. These results 
strongly supported the consideration of minocycline 
as a treatment for FXS. Indeed, several clinical studies 
that have been conducted, offered promising results 
(Paribello et al., 2010; Leigh et al., 2013; Siller and 
Broadie, 2012; Dziembowska et al., 2013; for review, see 
Hagerman and Polussa, 2015).

Concluding Remarks

The evidence for a role of MMP-9 in synaptic 
plasticity appears very compelling, indeed. It is 



Opera Med Physiol 2016 Vol. 2 (2): 103-111    107

Leszek Kaczmarek. MMP-9 in synaptic plasticity

derived from studies documenting enhanced MMP-
9 levels (mRNA, protein and enzymatic activity) 
unequivocally in response to stimuli that evoke 
plasticity and, moreover, those increases occur in/
around stimulated excitatory synapses. Furthermore, 
blocking of MMP-9, including using the most specific, 
gene KO approach impairs the plasticity. Finally, 
enhancement of MMP-9 was also shown to affect 
synaptic plasticity. These data seem to explain well 
the role of the enzyme in learning and memory, and 
may be also considered as an justification for MMP-
9 dysfunctions in major neuropsychiatric disorders. 
Nevertheless, in the latter case, MMP-9 involvement 
in neuroinflammation that clearly contributes to 
these disorders, cannot be overlooked, as alternative 
to the synaptic plasticity, explanation (see Vafadari 
et al., 2016).
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