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Abstract.  Neural prostheses (NPs) link the brain to external devices, with an eventual goal of recovery of motor and 
sensory functions to patients with neurological conditions. Over the past half-century, NPs have advanced significantly 
from the early ideas that sounded like science fiction to the modern high-tech implementations. In particular, invasive 
recordings using multichannel implants have enabled real-time control of artificial limbs by nonhuman primates and 
human subjects. Furthermore, NPs can provide artificial sensory feedback, allowing users to perceive the movements of 
prosthetic limbs and their haptic interaction with external objects. Recently, NP approach was used to build brain-nets 
that enable information exchange between individual brains and execution of cooperative tasks. This review focuses on 
invasive NPs for sensorimotor functions.

History of Neural Prostheses

Many would agree that modern Neuroscience started 
with the pioneering discoveries of Ramon Cajal (Finger 
1994, Ramón y Cajal 1995) and Camillo Golgi (Golgi 
1995) on the structure and connectivity of brain neurons, 
recognized by the Nobel prize in 1906. These founding 
fathers of Neuroscience principally disagreed in their 
views on the morphology and function of individual 
neurons. Cajal described single neurons as morphological 
entities. Golgi argued that neurons are not separated 
anatomically and do not work individually. He insisted 
that they are fused into a network. Although Golgi’s views 
were initially rejected, they turned to be valid at the end, 
as ion-conducting gap junctions were discovered between 
many types of brain neurons (Lewis and Rinzel 2003, 
Connors and Long 2004), the complexity that makes it 
difficult to describe brain networks as circuits composed 
of individual neurons similarly to the way electrical 
circuits are composed of transistors. The discovery of 
ephaptic coupling (Anastassiou, Perin et al. 2011), that is 
coupling by electrical fields produced by neurons, adds 
more complexity to brain network operations.

While many reports can be found in the literature of 
very specific response properties of single neurons, such 
as grandmother cells (Gross 2002) and Jennifer Aniston 
cells (Quiroga, Reddy et al. 2005), there is also a sizeable 
literature claiming that information is represented in the 
brain by large populations of neurons located in multiple 
neural regions (Houk and Wise 1995, Nicolelis and 
Lebedev 2009).

In motor neurophysiology, the studies of Apostolos 
Georgopoulos have been particularly influential to 
advance the population encoding ideas (Georgopoulos, 
Schwartz et al. 1986, Georgopoulos, Kettner et al. 
1988, Georgopoulos 1994). Georgopoulus proposed 
a population vector model to explain how neuronal 
ensembles represent motor parameters. He also assessed 
the size of neuronal population needed to produce an 
accurate representation. However, Georgopoulus did 
not record from many neurons simultaneously; his 

conclusions were based on the analyses of neural data 
collected in a serial manner over many days. With this 
approach, information could not be extracted from a 
sufficiently large neuronal ensemble in real time.

A decisive development was achieved in the 90s 
by Miguel Nicolelis, John Chapin and several other 
researchers who pioneered techniques for multielectrode 
recordings (Nicolelis, Lin et al. 1993, Wilson and 
McNaughton 1993, Nicolelis, Ghazanfar et al. 1998). 
These recording methods form the foundation of modern 
invasive NPs. 

NPs are artificial systems for bidirectional 
communication with the brain (Figure 1). The main goal 
of NPs is the development of medical applications, such 
as neurally controlled limb prostheses for paralyzed 
patients. Additionally, NP approach finds applications 
in such areas as computer gaming (Mason, Bohringer 
et al. 2004, Finke, Lenhardt et al. 2009, Martisius and 
Damasevicius 2016), safety systems that monitor drivers’ 
state of wakefulness (Picot, Charbonnier et al. 2008, Liu, 
Chiang et al. 2013, Garces Correa, Orosco et al. 2014) and 
even education (Marchesi and Riccò 2013). Some view NP 
as a technology for augmenting brain functions (Maguire 
and McGee 1999, Farah and Wolpe 2004, Madan 2014, 
Zehr 2015). NPs are interchangeably referred to as brain-
machine interfaces (BMIs) (Lebedev, Crist et al. 2008, 
Sakurai 2014), brain-computer interfaces (BCIs) (Allison, 
Wolpaw et al. 2007, Serruya 2015) and even biohybrids 
(Zehr 2015, Vassanelli and Mahmud 2016). Since NP 
interfere with the mind, they bring about many ethical 
issues (Attiah and Farah 2014, Glannon 2014, Schleim 
2014, Hildt 2015, Kyriazis 2015).

Historically, the venture into reading out the 
brain content started in the 60-70s when the idea of 
biofeedback gained popularity (Dahl 1962, Smith and 
Ansell 1965, Kamiya 1971, Sterman 1973, Kaplan 1975, 
Suter 1977). Biofeedback of neural activity is often called 
neurofeedback. Such neurofeedback, usually provided 
by visual or auditory signals, gives subjects an ability 
to monitor and volitionally modify their own brain 
activity. For example, subjects can learn to modify their 
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electroencephalographic (EEG) rhythms (Evans and 
Abarbanel 1999). 

The first demonstration that can be described as an 
NP dates to 1963, when Gray Walter demonstrated neural 
control of an external device by human subjects. Although 
Walter himself did not publish these results one can learn 
about them from the writings of Daniel Dennett who 
attended Walter’s lecture (Dennett 1991). Per Dennett, 
Walter recorded from motor cortical activity in human 
patients using implanted electrodes. The patients were 
instructed to press a button to advance a slide projector, 
the task that Walter used to investigate motor cortical 
readiness potentials that developed several hundred 
milliseconds prior to movement onset. Next, Walter 
electrically disconnected the button and switched to using 
the readiness potential as the trigger to advance the slides. 
The subjects were surprised that in this mode of operation 
the machinery detected their motor intentions before they 
initiated the hand movements. 

The goal of building NPs was explicitly formulated in 
the late 60s by Karl Frank, the chief of the laboratory of 
neural control at National Institutes of Health (NIH). He 
stated that the  laboratory would be developing systems 
that link the brain to external devices and computers 
(Frank 1968). Frank was also involved in collaborative 
research on NPs that restore vision to the blind. The NIH 
laboratory conducted their experiments in monkeys. They 
simultaneously recorded from 3-8 neurons in the motor 
cortex while monkeys flexed or extended their wrists. 

In offline analyses, the parameters of wrist movements 
were reconstructed from the neuronal data using multiple 
linear regression (Humphrey, Schmidt et al. 1970). 
This work continued for a decade and culminated in a 
demonstration of real-time decoding of cortical signals 
(Schmidt 1980): recordings were conducted using 12 
electrodes chronically implanted in the motor cortex, and 
the implanted monkey learned to control one-dimensional 
movements of a cursor on an LED display with its cortical 
activity.

In the late 60s, Eberhard Fetz trained monkeys to 
volitionally control the activity of single neurons in their 
motor cortex (Fetz 1969). Fetz interpreted these findings in 
terms of neurofeedback. In these experiments, monkeys 
learned to modulate the discharge rate of their neurons, 
provided they had a visual or auditory indicator of those 
discharges. 

Around the same time, Michael Craggs used baboons 
with spinal cord transections to test the possibility of 
restoring motor function to paraplegic subjects (Craggs 
1975). Prior to the spinal cord injury, the baboons were 
trained on a leg movement task Craggs discovered that, 
even after the motor cortical representation of the leg 
was disconnected from the spinal cord, it continued to 
generate task-related activity recorded with epidural 
electrodes. Accordingly, Craggs suggested that this type 
of recordings could be used for functional recovery of 
patients with leg paralysis.

While these scientists developed NPs for extraction 

Figure 1. Schematics of a neural prosthesis (NP) controlled by a rhesus monkey. A monkey is implanted with multielectrode arrays placed in 
multiple cortical areas. These cortical implants are used for both recording of neuronal ensemble activity and stimulating cortical tissue with 
electrical pulses. The monkey is seated in front of a computer screen that displays a virtual hand and several targets. The monkey explores 
the targets with the virtual hand. This exploration is performed either manually, using a joystick, or through the NP. In the NP mode of 
operation, cortical ensemble activity is processed by a decoder to generate kinematic parameters of the virtual arm. Each time the virtual arm 
touches a screen target, a pattern of electrical stimulation is applied to the somatosensory cortex. The stimulation mimics artificial textures 
of the targets. Thus, this NP enables bidirectional communication with the brain: motor commands are extracted from cortical activity 
simultaneously with the delivery of somatosensory feedback back to the brain. Aided with this NP, the monkey actively explores the targets, 
finds the one associated with a particular artificial texture, and receives a reward for the correct identification of that texture.
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of motor commands from the brain, other researcher 
groups started developing NPs for the delivery of sensory 
information to the brain. They electrically stimulated 
peripheral sensory nerves (Collins, Nulsen et al. 1960, 
Hensel and Boman 1960) and sensory areas of the brain 
(Libet, Alberts et al. 1964, Brindley and Lewin 1968, 
Brindley and Lewin 1968) to evoke artificial, but still 
recognizable sensations. Among these developments, a 
cochlear implant has achieved a spectacular success, with 
hundreds of thousands deaf people implanted with this 
device (Djourno and Eyriès 1957, Simmons, Mongeon et 
al. 1964, House 1976, Wilson and Dorman 2008). Some 
progress has been made in the development of visual 
NPs: the groups led by Giles Brindley(Brindley and 
Lewin 1968, Brindley and Lewin 1968, Brindley 1970) 
and William Dobell (Dobelle and Mladejovsky 1974, 
Dobelle, Mladejovsky et al. 1974, Dobelle, Mladejovsky et 
al. 1976, Dobelle, Quest et al. 1979) electrically stimulated 
visual cortex in blind patients. The stimulation evoked 
perceptions of light flashes, called phosphenes, and 
combinations of phosphenes produced by multi-channel 
stimulation could be matched to visual objects. The studies 
on visual NPs continue nowadays (Christie, Ashmont et 
al. 2016, Lewis, Ayton et al. 2016). There is also ongoing 
work on vestibular NPs (Shkel and Zeng 2006, Golub, 
Phillips et al. 2011).

As noted above, a significant breakthrough in the 
development of NPs occurred in the mid-90s, with the 
advent of chronic multielectrode implants (Buzsaki, 
Bickford et al. 1989, Nicolelis, Lin et al. 1993, Nicolelis, Lin 
et al. 1993, Nicolelis, Baccala et al. 1995). In 1999, Chapin, 
Nicolelis and their colleagues published a landmark study, 
where rats learned to control a simple robotic manipulator 
with their cortical ensembles (Chapin, Moxon et al. 1999). 
Following this success, Nicolelis commenced a series of 
NP studies in monkeys, including both New World and 
Old World species. A landmark study published in 2000, 
where owl monkeys controlled movements of a robotic 
arm with their cortical activity (Wessberg, Stambaugh et 
al. 2000). This work led to a series of monkey studies on 
NPs enabling arm movements (Serruya, Hatsopoulos et 
al. 2002, Taylor, Tillery et al. 2002, Carmena, Lebedev et 
al. 2003). 

Invasive NP research has been also conducted in 
humans. The multielectrode implant, called the Utah 
probe, is approved for human trials. This is a silicon-
based matrix of needle electrodes in a 10x10 arrangement 
(Campbell, Jones et al. 1991, Nordhausen, Maynard 
et al. 1996, Maynard, Nordhausen et al. 1997). The 
other electrode approved for human recordings is the 
neurotrophic electrode developed by Philip Kennedy 
(Kennedy 1989, Kennedy, Bakay et al. 1992, Kennedy, 
Mirra et al. 1992). The electrode contains nerve growth 
factor that promotes neurite growth into the glass cone 
to which recording microwires are connected. Kennedy 
and his colleagues reported that this recording method 
allowed severely paralyzed patients to operate several 
types of NPs that restored their communication with the 
outside world (Guenther, Brumberg et al. 2009, Brumberg, 
Nieto-Castanon et al. 2010).

Noninvasive NPs, i.e. the devices with recording 
sensors that do not penetrate the body, experienced their 
own impressive development. These systems are not 
described in detail here. In brief, Jacques Vidal pioneered 
this research the 70s by decoding EEG evoked responses 
(Vidal 1973). In 1988, the first report was published 
where human subjects controlled a robot with their EEG 
(Bozinovski, Sestakov et al. 1988). In that study, subjects 
issued binary commands by closing and opening their 
eyes. This maneuver started and stoped an alpha recorded 
with EEG sensors placed over the occipital cortex.  These 
studies towards the development of an NP for disabled 
patients culminated in the publication by Niels Birbaumer 
of a pivotal study on an EEG-based spelling device for 
locked-in patients (Birbaumer, Ghanayim et al. 1999). The 
device utilized slow cortical potentials. 

Types of Neural Prostheses 

Several classifications have been proposed to describe 
different types of NPs. NPs can be classified by function 
into: (1) motor NPs, (2) sensory NPs, (3) sensorimotor NPs, 
(4) cognitive NPs, and (5) brain-nets. Motor NPs generate 
movements, for example movements of artificial limbs 
(Wessberg, Stambaugh et al. 2000, Carmena, Lebedev et 
al. 2003, Velliste, Perel et al. 2008, Collinger, Wodlinger et 
al. 2013) or movements of a motorized wheelchair (Xu, 
So et al. 2014, Rajangam, Tseng et al. 2016). Sensory NPs 
evoke sensations using electrical (Romo, Hernández et al. 
1998) or optogenetic (Jarvis and Schultz 2015, Kwon, Lee 
et al. 2015) stimulation of nervous tissue. Sensorimotor 
NPs, also called bidirectional, simultaneously produce 
movements and evoke sensations (O'Doherty, Lebedev 
et al. 2009, O'Doherty, Lebedev et al. 2011, Bensmaia and 
Miller 2014). Cognitive NPs (Andersen, Burdick et al. 
2004, Andersen, Hwang et al. 2010) reproduce higher-
order functions, notably  attention (Astrand, Wardak et al. 
2014, Ordikhani-Seyedlar, Lebedev et al. 2016), memory 
(Berger, Hampson et al. 2011, Deadwyler, Hampson 
et al. 2013, Madan 2014, Song, Harway et al. 2014), and 
decision making (Musallam, Corneil et al. 2004). Brain-
nets are NPs incorporating several interconnected brains 
(Ramakrishnan, Ifft et al. 2015). 

The other useful classification of NPs is the 
classification into invasive (Chapin, Moxon et al. 1999) and 
noninvasive (Birbaumer, Ghanayim et al. 1999, Waldert 
2016) NPs. Invasive NPs provide better-quality neural 
recordings, but they carry risks to patients, including 
risk of tissue damage by invasive surgical procedures 
and electrode insertion, and the possibility of infection, 
particularly when recording cables pierce the skull and 
skin. Noninvasive NPs do not have such risks, but often 
suffer from low spatial and temporal resolution of the 
recorded neural signals.

NPs can be also classified by their operation principle 
into endogenous and exogenous devices. Endogenous 
NPs mimic “free will”:  users are free to choose the type 
and timing of actions. For example, in a motor imagery 
NP, users imagine moving their body parts to generate 
NP output (Obermaier, Neuper et al. 2001, Pfurtscheller 
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and Neuper 2006). Exogenous NPs require an external 
stimulus to operate, and that stimulus paces the actions. 
The stimulus evokes a neuronal response, and the user 
task consists of volitionally controlling that response 
(Sellers, Krusienski et al. 2006, Lee, Sie et al. 2010). A 
popular exogenous NP utilizes P300 evoked potentials, 
which increase when the user attends to the stimulus 
(Donchin, Spencer et al. 2000, Finke, Lenhardt et al. 2009, 
Brunner, Ritaccio et al. 2011). 

Neural Representation of Information

Although we still have a rather poor understanding of 
how the brain represents and processes information, the 
term “neuronal encoding” is commonly used to describe 
the properties of neuronal discharges. Usually, what is 
meant by neuronal encoding is the correlation of neuronal 
discharge rate to a behavioral parameter or an external 
stimulus. For example, discharge rates of neurons in 
motor areas clearly correlate with limb kinematics, and the 
rates of neurons in visual areas correlate with the features 
of visual stimuli. Such a correlation is often referred to as 
“neuronal tuning”. 

Neurons tuned to a certain behavioral parameter 
could be used by a BMI designed to extract the same 
parameter. In neurophysiology, such neurons are called 
task-related neurons. Even the best task-related neurons 
represent behavioral parameters in a noisy way, which 
hinders BMI decoding. Decoding accuracy can be 
improved by extracting information from many neurons 
simultaneously (Fetz 1992, Nicolelis and Lebedev 2009, 
Lebedev 2014). Combining contributions from many 
neurons improves the signal to noise ratio because noisy 
inputs from different neurons cancel each other, unless 
this is a common noise.

The pioneering work on neuronal tuning was 
conducted by Edward Evarts who developed the 
technique of single-unit recordings from the brain of 
awake, behaving monkeys (Evarts, Bental et al. 1962, 
Evarts 1964, Evarts 1966). Evarts usually recorded from 
one neuron at a time using a sharp-tipped electrode that 
he inserted in monkey motor cortex. Monkey were trained 
to perform motor tasks. Evarts found that neuronal 
discharge rates reflected movement onsets and the force 
of muscle contraction.

Apostolos Georgopoulos used Evarts’ recording 
methods to explore the relationship between the 
discharges of motor cortical neurons and the direction of 
arm movement. He described that relationship as a broad 
tuning curve that could be fitted with a cosine function of 
movement direction angle (Georgopoulos, Schwartz et al. 
1986, Georgopoulos, Kettner et al. 1988, Kettner, Schwartz 
et al. 1988, Schwartz, Kettner et al. 1988). 

With the advent of multielectrode recordings, 
investigators started to get more insights on the neuronal 
population encoding. It was experimentally that decoding 
accuracy improves with the neuronal population size 
(Blazquez, Fujii et al. 2002, Musallam, Corneil et al. 2004, 
Batista, Yu et al. 2008, Lebedev 2014, Montijn, Vinck et 
al. 2014). It was also discovered that the physiology of 

neuronal populations is governed by certain principles 
(Nicolelis and Lebedev 2009). Among these principles, 
single neuron insufficiency principle explains that each 
individual neuron encodes only a small amount of 
information. Mass effect principle states that a certain 
number of neurons (a mass) is required for the represented 
amount of information to stabilize. After the neuronal 
mass is reached, adding more neurons changes the 
information content very little, and many more neurons 
needed to be recorded for extracting new information. 
Distributed encoding principle asserts that many brain 
areas encode and process the same information; there is no 
localized processing in the brain. Multiplexing principle 
describes the property of individual neurons to represent 
many variables simultaneously. The conservation of firing 
principle states that the average discharge frequency of the 
neurons in the ensemble remains approximately constant, 
even when the brain state changes. A somewhat similar 
principle is called free energy principle (Friston, Kilner et 
al. 2006, Friston 2009, Friston 2010, Tozzi, Zare et al. 2016). 
The context principle states that ensemble activity patterns 
critically depend on the behavioral context: neuronal 
responses to the same stimulus could differ dramatically 
in different contexts. And, finally, the plasticity principle 
highlights the capacity of neuronal ensembles to adapt to 
new conditions and behaviors.

Recording Methods

Currently, microwire implants are the most popular 
method of neuronal ensemble recordings (Nicolelis, 
Ghazanfar et al. 1997, Kralik, Dimitrov et al. 2001, Schwarz, 
Lebedev et al. 2014). Microwires in such an implant 
can be individually movable or fixed. This method is 
suitable for recording neuronal activity in both the cortex 
and subcortical areas. The Utah array composed of 
silicon electrodes is another popular recording method 
(Campbell, Jones et al. 1991). As mentioned above, the 
Utah array has been approved for human trials.
New recording methods are constantly being developed. 
The main goals here are increasing the number of recording 
channels, minimizing tissue damage and increasing 
recording longevity. These goals are achieved using novel 
floating (Gualtierotti and Bailey 1968, Musallam, Bak et 
al. 2007, Neves, Orban et al. 2007, Spieth, Brett et al. 2011) 
and flexible (Takeuchi, Suzuki et al. 2003, Kozai and Kipke 
2009, Hassler, Guy et al. 2011, Agorelius, Tsanakalis et 
al. 2015, Agorelius, Tsanakalis et al. 2015) implants. One 
promising method, called sinusoidal probe, uses thin, 
flexible electrodes with reduced motion relative to the 
nervous tissue (Sohal, Jackson et al. 2014).

Several microelectrodes designs improve the yield 
and quality of neuronal recordings. NeuroNexus 
microelectrodes increase the number of recording 
channels by having multiple contacts along the shaft 
(Najafi, Wise et al. 1985, Anderson, Najafi et al. 1989, 
Weiland and Anderson 2000, Vetter, Williams et al. 2004). 
Twisted bundles of four electrodes, called tetrodes, have 
enhanced capacity to discriminate single units (Recce 
and O’keefe 1989, Wilson and McNaughton 1993, Jog, 
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Connolly et al. 2002, Santos, Opris et al. 2012).
Recently, a principally new recording method has 

been introduced, called neural dust (Seo, Carmena et al. 
2015, Seo, Neely et al. 2016). Neural dust is composed of 
small (10-100 microns) sensors that detect bioelectrical 
potentials. The sensors communicate with an external 
transducer though an ultrasonic link. Each sensor has a 
piezoelectric element that reflects the ultrasound sent 
from the transducer, and the reflected signal changes 
depending on the electrical potential detected by the 
sensor.

Another electrode type, called endovascular 
electrode, penetrates the brain through the blood vessels. 
Endovascular nano-electrodes can penetrate into the 
brain capillaries without breaking the blood-brain 
barrier (Llinas, Walton et al. 2005). Additionally, larger 
endovascular electrodes can be placed into cerebral 
arteries to record neural signals similar to EEG recordings 
(Boniface and Antoun 1997). A multichannel endovascular 
probe, called stentrode, was recently developed (Oxley, 
Opie et al. 2016). The stentrode was introduced into the 
sheep brain and retained good recording quality for 190 
days.

Optical recordings are another method that can 
be employed for sampling signals from neuronal 
populations. These methods utilize fluorescent markers 
that are sensitive to voltage (Tasaki, Watanabe et al. 1968, 
Patrick, Valeur et al. 1971, Grinvald, Frostig et al. 1988, 
Grinvald and Hildesheim 2004) or intracellular calcium 
(Smetters, Majewska et al. 1999, Stosiek, Garaschuk et al. 
2003, Grewe, Langer et al. 2010).

Electrocorticographic (ECoG) recordings represent a 
minimally invasive method for recording cortical activity 
(Crone, Sinai et al. 2006, Leuthardt, Miller et al. 2006, Miller, 
Shenoy et al. 2007, Hill, Gupta et al. 2012). High-density 
ECoG grids offer a significantly improved resolution of 
recordings (Wang, Degenhart et al. 2009, Viventi, Kim et 
al. 2011, Bleichner, Freudenburg et al. 2016). 

Multichannel neuronal recordings usually require 
cables to connect the electrodes to external recording 
equipment (Chapin, Moxon et al. 1999, Wessberg, 
Stambaugh et al. 2000, Serruya, Hatsopoulos et al. 2002, 
Taylor, Tillery et al. 2002, Carmena, Lebedev et al. 2003). 
More recently, a variety of wireless recording methods 
has been developed (Obeid, Nicolelis et al. 2004, Morizio, 
Irazoqui et al. 2005, Borghi, Bonfanti et al. 2007, Chestek, 
Gilja et al. 2009, Harrison, Kier et al. 2009, Kim, Bhandari 
et al. 2009, Zippo, Romanelli et al. 2015).

Decoding Algorithms

Mathematical algorithms for decoding information from 
neuronal activity can be generally described as multiple-
input, multiple-output (MIMO) models (Kim, Sanchez et 
al. 2006). The characteristics of a decoder are often set up 
using a training recording session. During that session, 
subjects either perform overt limb movements or passively 
the movements of an external actuator while imagining 
that they control those movements. The training session is 
needed to measure the relationship between the neuronal 

discharges and the behavioral parameters of interests. For 
example, if a subject moves the arm in different directions 
for some time, the decoder could be trained to extract arm 
kinematics from the neuronal activity. After the decoder 
is trained, the mode of operation can be switched to brain 
control, during which the decoder output controls an 
external device. Additionally, adaptive decoders can be 
used to adjust an ongoing brain control (Taylor, Tillery 
et al. 2002, Carmena, Lebedev et al. 2003, Ganguly and 
Carmena 2009, Li, O'Doherty et al. 2011, Orsborn, Dangi 
et al. 2012, Dangi, Gowda et al. 2014).

A great variety of neural decoders have been developed 
over the years (Schwartz, Taylor et al. 2001, Li 2014, 
Agorelius, Tsanakalis et al. 2015). The simplest, but also 
very effective algorithm is the linear model that represents 
output signals as weighted sums of neuronal firing rates 
(Wessberg, Stambaugh et al. 2000, Taylor, Tillery et al. 2002, 
Carmena, Lebedev et al. 2003, Wessberg and Nicolelis 
2004) (Figure 2). For example, Georgopoulos’ population 
vector algorithm is a linear model that computes a vector 
some of unit vectors pointing in the neurons’ preferred 
directions and weighted by the neuronal frequencies 
of discharge (Georgopoulos, Schwartz et al. 1986, 
Georgopoulos, Kettner et al. 1988, Georgopoulos, Lurito 
et al. 1989). The population vector algorithm, however, is 
not optimal because it does not minimize the decoding 
error. A better method, the Wiener filter (Figure 2), is an 
optimal linear algorithm that minimizes the error using a 
well-known multiple linear regression approach (Haykin 
2014). To calculate a parameter of interest at time t, the 

Figure 2. Decoding neuronal ensemble activity using a linear 
decoder (Wiener filter). For a time of interest, t, neuronal firing 
rates are measured in a time window preceding t. The window is 
split into several bins, also called taps; firing rates are measured 
within each bin. A behavioral parameter of interest (for example, 
arm coordinate) is then represented as a weighted sum of neuronal 
rates for different bins. The weights are calculated using the well-
known multiple linear regression methods.



216     doi:10.20388/ OMP.003.0035

Mikhail Lebedev. Augmentation of Sensorimotor Functions with Neural Prostheses

Wiener filter measures neuronal rates at multiple time 
points preceding t, called taps, lags or bins, and assigns 
separate weight for each neuron, and for each tap.

Kalman Filter (Kalman 1960, Kalman and Bucy 1961) 
is another popular decoding algorithm that has been 
employed in many NPs (Serruya, Shaikhouni et al. 2003, 
Patil, Carmena et al. 2004, Wu, Shaikhouni et al. 2004, Kim, 
Sanchez et al. 2006, Li, O'Doherty et al. 2009, Okorokova, 
Lebedev et al. 2015). The filter separates variables into the 
state variables (for example, arm position and velocity) 
and observed variables (neuronal discharge rates). The 
relationship between the state variables and neuronal 
rates is described by function called the tuning model, 
and the dynamical properties of the state variables are 
described by the state model. The Kalman filter uses both 
models to update the state variables data in discrete steps, 
for example every 50-100 ms. Each update consists of 
several steps. First, an estimation of new state is generated 
from the previous state using the state model. Next, an 
expectation of neuronal rates is derived from the estimated 
state and the tuning model. That expectation is compared 
with the observed neuronal discharges, and, based on 
this comparison, the state estimation is corrected. An 
improved filter, the unscented Kalman filter, accounts for 
nonlinear relationship between neuronal rates and state 
variables, and outperforms the classical Kalman filter (Li, 
O'Doherty et al. 2009). It has been suggested that the brain 
itself uses computations like the Kalman filter (Wolpert 
and Ghahramani 2000).

Several adaptive decoders have been developed to 
improve stability of decoding. One such algorithm let 
monkeys to control a virtual arm with their cortical activity 
for 29 days without the need to run training sessions (Li, 
O'Doherty et al. 2011). An alternative approach is to fix 
the decoder settings and allow the nervous systems to 
plastically adapt to improve the performance (Ganguly 
and Carmena 2009).

Decoders have been recently introduced that track 
the distance between the cursor and target of movement, 
and adjust their parameters to minimize that distance 
(Kowalski, He et al. 2013, Suminski, Fagg et al. 2013, 
Shanechi, Orsborn et al. 2014).

Reinforcement learning is yet another adaptive 
algorithm employed in NPs (DiGiovanna, Mahmoudi 
et al. 2009). This algorithm updates its parameters based 
on the success or errors of the behavioral trials. In one 
implementation of reinforcement learning, an error 
signal was extracted from the brain itself, namely from 
the activity of nucleus accumbens, making this NP a self-
sufficient, unsupervised learning system (Mahmoudi, 
Pohlmeyer et al. 2013). 

Neurally Controlled Prosthetic Arms

The development of neurally controlled prostheses of 
the upper limbs has been one the main directions of NP 
research (Carmena, Lebedev et al. 2003, Hochberg, Bacher 
et al. 2012, Collinger, Wodlinger et al. 2013). Such interest 
to the upper limb function is understandable because of 
the role that arm movements have in our motor repertoire. 

The first demonstration of the control of a robotic arm 
by a primate was performed using owl monkeys as an 
experimental model (Wessberg, Stambaugh et al. 2000). 
That was an open-loop brain control because monkeys 
did not receive any sensory feedback from the robot 
(Wessberg, Stambaugh et al. 2000). While the monkeys 
performed a reaching task with a joystick, activity of 
their motor cortical neuronal ensembles was recorded, 
decoded with a Wiener filter and sent to the robot. The 
robot reproduced the joystick movements with some 
errors, which the monkeys obviously could not correct.

Brain control in a closed-loop mode (i.e. with a 
vision of the robot or cursor, or other type of sensory 
feedback) was first demonstrated in rhesus monkeys 
(Serruya, Hatsopoulos et al. 2002, Taylor, Tillery et al. 
2002, Carmena, Lebedev et al. 2003). Jose Carmena and 
his colleagues chronically implanted rhesus monkeys 
with mulielectrode arrays in multiple cortical areas, and 
trained the animals to control the movements of a robotic 
arm with the recorded cortical activity (Carmena, Lebedev 
et al. 2003). The robotic arm performed reaching and 
grasping movements. Monkeys started with controlling 
the robot arm manually, using a two-dimensional joystick 
that could be also squeezed to generate grip force of the 
robot. The monkeys did not have vision of the robot, but 
received visual feedback from it on a computer screen. The 
robot position was indicated by a computer cursor, and the 
grip force was indicated by the cursor size. Reach targets 
showed up on the screen, as well. While the monkeys 
performed the task manually, three Wiener filters were 
trained to extract X and Y components of joystick velocity 
and the grip force from cortical ensemble activity. Next, the 
joystick was electrically disconnected from the robot, and 
the Wiener filters’ outputs controlled the robot instead. 
The monkeys continued to assist themselves by moving 
the joystick for some time during this brain control mode. 
The joystick was then physically removed from the setup, 
after which the performance accuracy initially dropped 
but then improved.

A somewhat similar experiment was conducted 
by Dawn Taylor and her colleagues at the laboratory of 
Andrew Schwartz (Taylor, Tillery et al. 2002). In that 
study, monkey wore stereoscopic glasses that displayed a 
cursor in a three-dimensional space. The cursor position 
was controlled by the motor cortical activity using a 
population vector decoder. A coadaptive algorithm was 
employed to improve the decoding. The coadaptation 
consisted of comparing the cursor trajectories to the ideal 
trajectories connecting the starting position with the target, 
and adjusting the population vector weights to bring the 
trajectories closer to the ideal ones. In the next study of 
the Schwartz laboratory, monkeys controlled a robotic 
hand that grasped pieces of food and brought them to the 
monkey’s mouth (Velliste, Perel et al. 2008). 

John Donoghue and his colleagues demonstrated 
real-time cortical control of a computer cursor and robotic 
hand in human patients (Hochberg, Serruya et al. 2006). 
Paralyzed human subjects received Utah probes in the 
motor cortex, which allowed to record several tens single-
units. Several years later the same group demonstrated 
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a neuroprosthetic arm that picked up a coffee bottle and 
brought it to patient’s mouth (Hochberg, Bacher et al. 
2012). In that experiment, the performance was assisted 
by shared control, where some operations were handled 
by a robotic controller instead of the patient. The neural 
part of the control was handled by the Kalman filter.

Recently, Andrew Schwartz and his colleagues 
recorded several hundreds of single units in the human 
motor cortex (Collinger, Wodlinger et al. 2013). With this 
improved recording quality, patients learned to control a 
seven degrees of freedom robotic arm that reached toward 
knobs, grasped them, and turned in different directions.

Peter Ifft and his colleagues reported a further 
achievement in NPs for arm control (Ifft, Shokur et al. 
2013). In those experiments, monkeys controlled two 
virtual arms simultaneously that performed center-out 
reaching movements towards two separate targets for 
each arm. Approximately five hundred neurons were 
recorded in multiple cortical areas, and an unscented 
Kalman filter was used for decoding.

Neural Prostheses for Restoration of Locomotion

Invasive NPs for the control of lower limbs have remained 
underdeveloped for some time. That was because most 
neurophysiological studies in nonhuman primates have 
traditionally focused on the upper limb tasks, whereas the 
control of the lower limbs remained virtually neglected. 
Only several years ago, NPs have started to develop for 
restoration of legged locomotion (Cheng, Fitzsimmons et 
al. 2007, Bouyarmane, Vaillant et al. 2014), and currently 
we are witnessing a rapid rise in such NPs.

Nathan Fitzsimmons and his colleagues recorded 
from sensorimotor cortical ensembles in monkey trained 
to walk bipedally on a treadmill (Fitzsimmons, Lebedev 
et al. 2009). While the monkeys performed the walking, 
movements of their lower limbs were monitored using 
a video tracking system (Peikon, Fitzsimmons et al. 
2009). Using these recordings as a training data, multiple 
Wiener filters were set to reproduce the lower limbs 
kinematics from the cortical recordings. The Wiener filters 
also reproduced EMGs of the lower limb muscles. Both 
forward walking and backward walking were decoded. 
Next, the researchers sent the decoded kinematic 
parameters of monkey walking to Kyoto, Japan, where 
a humanoid robot reproduced the monkey gait at the 
laboratory of Mitsuo Kawato (Cheng, Fitzsimmons et al. 
2007, Kawato 2008). 

These findings highlight the fact that invasive cortical 
recordings can provide highly efficient signals for the 
control of devices that restore walking, for example for 
exoskeletons, such as ExoAtlet (Figure 3). Exoskeletons 
controlled by invasive NPs, such as cortical microelectrode 
recordings and ECoG, most certainly will emerge in 
the near future because both the recording methods 
(Leuthardt, Miller et al. 2006, Collinger, Wodlinger et 
al. 2013, Schwarz, Lebedev et al. 2014) and exoskeleton 
technologies (Farris, Quintero et al. 2012, Frolov, Biriukova 
et al. 2013, Lisi, Noda et al. 2014, Wall, Borg et al. 2015, 
Onose, Cârdei et al. 2016) already exist.

One interesting strategy in NPs for locomotion is using 
cortical signals as a control signal to an electrical stimulator 
to the spinal cord that evokes walking automatism. The 
feasibility of such a system was recently demonstrated in 
a study conducted in rhesus monkeys with partial spinal 
cord injuries (Capogrosso, Milekovic et al. 2016). In that 
study, monkeys with spinal cord lesions attempted to 
walk quadrupedally but experienced deficits in the leg 
ipsilateral to the lesion site. The researchers alleviated 
this deficit by decoding the step cycle from motor cortical 
activity and triggering the spinal cord stimulation at the 
appropriate phases of the cycle. The stimulation induced 
near-normal stepping movements in the impaired leg.

Currently, the wheelchair still remains the main means 
of locomotion for paralyzed patients. Here, invasive NP 
technology could come handy, particularly for severely 
paralyzed patients who cannot use their upper limbs 
to control the wheelchair. Although noninvasive NPs 
for wheelchair control already exist (Moore 2003, Craig 
and Nguyen 2007, Galán, Nuttin et al. 2008), invasive 
NPs could offer much better information transfer rate, 
reaction time and versatility. A pioneering study of an 
invasive NP for wheelchair control was conducted by 
Rajangam and her colleagues who demonstrated that 
rhesus monkeys could navigate while seating on top of 

Figure 3. The ExoAtlet. This is an electrically actuated exoskeleton 
that assists patients suffering from leg paralysis. The ExoAtlet 
allows to set the stepping parameters and enacts several bipedal 
states, such as standing, walking on different surfaces and stepping 
over obstacles. Reproduced with permission from Ekaterina Bereziy, 
exoatlet.ru.
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a motorized wheelchair and steering it with their motor 
cortical activity (Rajangam, Tseng et al. 2016). For this 
purpose, two Wiener filters were trained; one controlled 
the linear velocity of the wheelchair (i.e., back and forth 
movements), and the other controlled rotational velocity 
(i.e., wheelchair turns). 

Controlling Patient’s Own Muscles

An alternative to using robotic devices is the possibility 
to reanimate patient’s paralyzed body using functional 
electrical stimulation (FES) of the muscles. Several FES-
based NPs have been already developed.

Efficient NPs of this type should be able to decode 
muscle-like patterns from the brain activity. The feasibility 
of such decoding was demonstrated using simultaneous 
recordings of cortical activity and arm EMGs in monkeys 
(Morrow and Miller 2003, Santucci, Kralik et al. 2005, 
Pohlmeyer, Solla et al. 2007, Fitzsimmons, Lebedev 
et al. 2009). In these experiments, linear decoders 
successfully reconstructed EMG patterns from cortical 
activity. Furthermore, experiments in humans showed 
that multi-channel FES of hand muscles evoked  a 
variety of movements that approximated normal hand 
movement(Seifert and Fuglevand 2002, Johnson and 
Fuglevand 2011).

The first demonstration of a FES-based NP involved 
EEG recordings (Pfurtscheller, Müller et al. 2003, 
Pfurtscheller, Rupp et al. 2005). Aided by this NP, a 
patient learned to control an FES device that animated the 
paralyzed hand. The patient was able to grip and translate 
objects. Invasive FES-based NPs were demonstrated in 
monkeys (Moritz, Perlmutter et al. 2008, Pohlmeyer, Oby 
et al. 2009, Ethier, Oby et al. 2012). In these experiments, 
monkey arms were temporarily paralyzed by local 
anesthetics applied to the nerves. Neuronal activity was 
recorded in the motor cortex and converted into FES 
patterns. Monkeys were able to perform motor tasks by 
putting their arms into action with the FES. And finally, 
an invasive, FES-based NP restored mobility to the hand 
of a human patient with a complete spinal cord injury 
(Bouton, Shaikhouni et al. 2016).

Artificial Somatosensory Sensations

Sensory NPs transmit information from the outside 
world to the brain (Dobelle 1994, Lebedev and Nicolelis 
2006, Nicolelis and Lebedev 2009, Rothschild 2010, 
Lebedev, Tate et al. 2011, Bensmaia and Miller 2014). Such 
NPs are intended for people with sensory disabilities. 
Given the large number of sensory modalities, one can 
imagine a variety of NPs that restore sight, hearing, tactile 
sensations, etc. by sending the appropriate information 
to the corresponding sensory areas of the brain. Sensory 
NPs could be interfaced to different levels of sensory 
hierarchy: to the peripheral nerves, spinal cord, thalamus 
and cortex. Ideally, sensory NPs should account not only 
for the bottom-up flow of information from the peripheral 
receptors to the brain, but also for the top-down, 
anticipatory communications that are known to play an 

essential role in sensory processing (Lebedev, Denton et 
al. 1994, Siegel, Körding et al. 2000, Ghazanfar, Krupa et 
al. 2001, Krupa, Wiest et al. 2004, Gilbert and Sigman 2007, 
Pais-Vieira, Lebedev et al. 2013, Pezzulo, D'Ausilio et al. 
2016). 

Several NPs have been proposed for restoring 
somatosensory sensations. This work is rooted in the 
pioneering discoveries made in the beginning of the 
20th century on the effects of electrical stimulation of the 
brain. In 1909, Harvey Cushing discovered that electrical 
stimulation of the human cortex can evoke somatosensory 
percepts without inducing limb movements (Cushing 
1909). The sensory effects of electrical stimulation were 
subsequently studied in great detail by Wilder Penfield 
(Penfield and Boldrey 1937). Penfield’s patients reported 
sensations of numbness, tingling, and rarely pain after 
their somatosensory cortex was electrically stimulated 
with surface electrodes.

Modern stimulation methods are based on 
microstimulation, that is injection of small currents 
into the brain tissues using thin electrodes (Bartlett 
and Doty 1980, Fitzsimmons, Drake et al. 2007, Kim, 
Callier et al. 2015). Romo and his colleagues employed 
microstimulation of monkey primary somatosensory 
cortex to induce sensations comparable by those 
evoked by vibrotactile stimulation of the hands (Romo, 
Hernández et al. 1998). Fitzsimmons and his colleagues 
pioneered the usage of chronic cortical implants for the 
same purpose (Fitzsimmons, Drake et al. 2007). In those 
experiments, owl monkey learned progressively more 
complex discrimination tasks, starting from detecting the 
mere presence of microstimulation, then discriminating 
different temporal patterns of microstimulation, and 
finally discriminating spatiotemporal patterns delivered 
to the somatosensory cortex through several pairs of 
electrodes. 

Bidirectional NPs (Figure 1), opened a new chapter 
in the development of sensory NPs. These systems 
simultaneously extract motor commands from the brain 
motor areas and deliver artificial sensory feedback to the 
sensory areas. O’Doherty and his colleagues implemented 
bidirectional NPs in monkeys (O'Doherty, Lebedev 
et al. 2009, O'Doherty, Lebedev et al. 2011). In these 
experiments, monkeys controlled a virtual arm shown on 
a computer screen with their motor cortical activity. The 
monkeys’ task was to search through an array of screen 
targets with the virtual hand. The targets were visually 
identical, but they were associated with different artificial 
tactile sensations produced by microstimulation of the 
primary somatosensory cortex. The microstimulation 
started when the monkey placed the virtual hand over a 
target. Using such a bidirectional NP, monkeys were able 
to quickly search through up to three targets displayed on 
the screen.

Brain-Nets

Brain-nets represent a futuristic development in NPs. 
These are NPs that incorporate several brains that work 
like a super-brain, and potentially could even work as 
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a global brain (Kyriazis 2015). The brains included in a 
brain-net can perform cooperative tasks and exchange 
information with each other. A pioneering brain-net 
experiment was conducted in rats (Pais-Vieira, Lebedev 
et al. 2013). One rat performed a motor task and acted 
as a transmitter because its brain activity, after moderate 
processing with a sigmoidal transfer function, was passed 
to another rat, called receiver. Microstimulation was 
applied to the receiver’s sensorimotor cortex to deliver the 
information.

Brain-nets can connect different species, for example 
they can connect the human brain to animal brain. In one 
such experiment neural information was transmitted from 
a human operating an EEG-based NP to an anesthetized 
rat (Yoo, Kim et al. 2013). The transmitted command 
triggered an ultrasound stimulator that activated the rat 
motor cortex and evoked tail movements. In another 
experiment, information was transferred from the human 
brain to cockroach brain (Li and Zhang 2016).

Information exchange was also carried out between 
two human brains. Grau and his colleagues conducted 
a study, where one subject operated an EEG-based 
NP, while the second received messages in the form of 
transcranial magnetic stimulation (TMS) of the visual 
cortex that evoked phosphenes (Grau, Ginhoux et al. 
2014). In a similar experiment, Rao and his colleagues had 
one subjects operate an EEG-based NP. Whereas TMS was 
applied to the second subject’s motor cortex, and evoked 
hand movements (Rao, Stocco et al. 2014). In an even 
more advanced demonstration, the same group enabled 
humans to read the mind of the other humans using an 
interactive question and answer game (Stocco, Prat et al. 
2015).

Yet another type of a brain-net, called brain plus the 
brain interface, was implemented in rhesus monkeys 
(Ramakrishnan, Ifft et al. 2015). That interface assisted 
collaboration between the subjects. Several monkeys (two 
or three) contributed their cortical signals, which resulted 
in a better control of a single virtual arm.

Conclusion

Overall, we have seen a significant progress in the field of 
invasive NPs. Improvements in neural recordings methods 
allow sampling signals of better quality from a larger 
number of channels. The high channel count translates 
into improved neural decoding and more accurate control 
of external devices. Sensory and bidirectional NPs have 
been developed with the goal of assisting patients with 
sensory disabilities. Moreover, brain-nets connect the 
nervous systems of several participants into a higher-order 
circuit. These trends in invasive NPs will be translated in 
the future into multiple benefits for the humanity
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