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Fig. 1. “Eating” behaviour based onsynchronization 

phenomenon in the animat. Left and right columns 

correspond to before and after learning, respectively. The 

output from the ultrasonic sensor (s) provokes 

synchronization (red circled) of neurons in the main 

network (n is a representative neuron). This in turn leads 

to activation of the phase filter neuron (d1) and later of the 

frequency filter neuron (d2) and the animat opens the jaws. 

INTRODUCTION 

Neurons as a main building block of the brain have 

enormous computational capacity. Therefore, the 

development of mathematical models of spiking neurons 

and neural networks on their basis is a promising 

approach for applied computations (Paugam-Moisy and 

Bohte, 2009). However, the number of successful 

attempts of technical implementations remains very 

limited. Recent studies have shown that networks of 

spiking neurons can be used for recognition of patterns of 

different origin (Bichler et al., 2011; Loiselle et al., 2005; 

Kasabov et al., 2012). In this work we report two 

successful studies of spiking neural networks. In the first 

case we use a toy robot, a crocodile, driven by a neural 

network in-silico. We show that this so-called 

neuroanimat is capable of detecting internal events of 

synchronization of network responses to stimuli. In the 

second example we employ a spiking neural network for 

building a human-robot interface. Using a bracelet with 

eight electromyographic sensors we classify hand 

gestures in real time and use them to control a mobile 

robot. 

METHODS 

Neuroanimat. We developed a neuro-simulator, called 

NeuroNet, which models a network of 400 excitatory and 

100 inhibitory Izhikevich-type neurons (Izhikevich, 

2004). Topologically the neurons are distributed over 

nodes in a 2D graph whose edges correspond to 

couplings between cells. Then, the time delay in spike 

transmission between neurons is proportional to the 

distance between the corresponding nodes. Each neuron 

receives about 30 afferent couplings. The coupling 

probability decreased with the distance between neurons. 

The model simulates two types of synaptic plasticity. The 

short-term plasticity (facilitation and depression) is 

implemented by varying the transmitter release according 

to the frequency of presynaptic spikes (Tsodyks et al., 

1998). The long-term potentiation is based on spike-

timing dependent plasticity (STDP) (Morrison et al., 

2008). If a postsynaptic spike follows a presynaptic spike 

then the coupling strength increases. In the case of 

inverse spike timings the coupling strength reduces. An 

ultrasonic distance sensor placed on the robot head 

provides sensory information to the neural network. The 

sensor modulates the frequency of square pulses 

produced by a virtual generator. The output of this 

generator is fed to an  arbitrary part of the network. 

Finally, the network output controls the robot 

movements.  

Human-robot interface. We developed a hardware-

software complex, called MyoClass, for real time 

recording of EMG signals and recognition of hand 

gestures for controlling a mobile robot. The recording is 

accomplished by a bracelet  YO™ Thalmic pro iding 

simultaneously eight sEMG signals from the sensors 

(embedded MYO Thalmic gesture recognition was off). 

We used nine static hand gestures as motor patterns. 
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Fig. 2. A representative example of processing of an EMG 

signal by a spiking sensory neuron 

During an experiment users performed four series of nine 

gestures each, selected in random order.  For extraction of 

the discriminating features from sEMG signals we 

employed the same neuronal model as in the neuroanimat 

approach. The network output was connected to a 

multilayer artificial neural network for the feature 

classification. The standard error backpropagation 

algorithm was used for learning. 

Robot platforms. Both robot platforms for the animat (a 

crocodile) and for testing the human-robot interface (a 

car) were built from a LE O kit NXT  indstorms ®. 

Communication between all parts has been implemented 

through a Bluetooth® interface.  

RESULTS 

Neuroanimat: basic behaviours. We first checked that 

the neural network in-silico could exhibit all basic 

properties of an in-vitro neuronal culture such as bursting 

activity (Wagenaar et al., 2006) and plasticity provoked 

by external stimuli (Pimashkin et al., 2013). Adaptive 

structural changes in the network are related to long-term 

potentiation of the coupling weights. We found that such 

changes can lead to new emerging functional properties, 

i.e. to synchronization of the network firing with external 

stimuli. We revealed two criteria working at the low 

neuron level that allow distinguishing between 

synchronous and asynchronous network activities: 

a. High frequency (> 8-11 Hz) spiking of neurons;

b. Stable phase lag (about 60-70 ms) of fired spikes

related to the stimulus onset. 

To combine both criteria we proposed a neural circuit that 

includes phase and frequency neuronal filters coupled in 

series. Then, the filter output passes through a neuron-

detector, which fires spikes in case of synchronization of 

the network activity with the stimulus. The phase filter 

employs axonal delays in two inhibitory neurons included 

between the stimulated part of the network and the 

neuron-detector. The first neuron receives input through 

the geometrically shortest path and thus suppresses 

excitatory spikes in the time range [20-60] ms after the 

stimulus onset. The second neuron placed at a distance 

from the detector suppresses the excitation in the range 

[70-120] ms. Thus, these neurons strongly inhibit all 

spikes at the detector except those falling into the range 

[60-70] ms.  The frequency filter relies on the effect of 

presynaptic facilitation in the framework of short-term 

synaptic plasticity. The filter parameters have been tuned 

in such a way that the amount of neurotransmitter release 

increased for series of presynaptic spikes coming at rates 

higher than 8 Hz. Thus, the output spikes are generated 

for high frequency activity of the presynaptic neuron 

only.  Spontaneous activity in the neural network 

eventually leads to an arbitrary movement of the robot. 

Then, in case of the presence of an object in the sensory 

field of the robot, its sensory system generates an output 

that innervates the neural network. This in turn may lead 

to a strong increase of the motor activity. The 

combination of spontaneous and evoked activities in the 

neural network may lead to the behaviour of searching for 

a target. Even in the absence of any object in the 

immediate neighbourhood, the animat from time to time 

begins mo ing and “looking” for objects or walls in the 

room.  In case of event synchronization we observed 

“eating” beha iour (Fig. 1). At high frequency 

synchronization neuronal spikes pass the phase and 

frequency filters, which leads to activation of moto-

neurons driving quick opening and closing of the jaws. 

Spiking neurons in human-robot interface. The 

myographic bracelet provides simultaneously eight 

sEMG signals. Then, the purpose of the neural network is 

to extract the most discriminative features from these 

signals in such a way that the artificial neural network 

could easily classify them according to the gestures made 

by hand. Spiking neurons, acting as sensory neurons, 

receive myographic signals from the bracelet and produce 

some output spikes. We consider the output synaptic 

signal evaluated in the framework of the Tsodycs-

Markram model as continuously changing feature. Then, 

we can sample this variable at discrete time instants. 

Figure 2 shows a representative example of an sEMG 

signal (top), the transmembrane potential of the spiking 

sensory neuron (middle) and its output (bottom). During 

experiments we tuned the parameters of spiking neurons 

to ensure high accuracy of the classifier, comparable with 

the use of classic sEMG feature as the root mean square 

value. For ten subjects (25-56 years old) the classifier 

accuracy was 92.3±4.2%. We then tested the human-

robot interface in real time. 

The user controlled the mobile robot using hand gestures. 

E ery recognized gesture (except “rest”) was associated 

with an instruction of mo ement of the robot: “dri e”, 

“re erse”, “forward right”, “forward left”, “re erse 

right”, “re erse left”, “stop”, and “fire”. Our results show 

that all users after 3-10 trials managed to control fluently 

the robot. 

DISCUSSION 

In this work we reported two successful cases of 

developing neural networks of spiking neurons for 

controlling mobile robots. In the first case the neural 

network works autonomously as a “brain” of an animat. 

We have shown that it is able to learn from the 

environment and to reproduce basic behaviour of 

ad ancing towards an object and “eating”.  n the second 
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case the neural network has been used as a processor for 

human-robot interface. We have shown that the interface 

can faithfully detect myographic signals, classify them 

according to hand gestures, and send the corresponding 

commands to the robot. Although the two applications 

belong to different areas of the Control Theory and 

applied Neuroscience, they are based on a common 

approach of neural computations. We note that in both 

cases besides neural networks there are no additional 

external algorithms for the decision-making.Please, make 

your references list in accordance with the example 

below (please, notice that it is represented in alphabetical 

order). Do not force the "References" section to start on a 

new page. 
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INTRODUCTION 

Delayed implantation (DI) is arrest of embryo 

development at the blastocyst stage, characterized by 

inhibition of mitotic activity and synthesis of nucleic 

acids in cells of the inner cell mass of embryo and 

temporary prevention of it implantation in uterus. The 

Mustelidae family seems to be the most interest for DI 

research because of extraordinary prevalence of this trait 

in this family; almost half of mammals with DI are 

mustelids. Delayed implantation feature is pleomorphic in 

mustelids. It seems to be inherited from common 

ancestor. In a process of evolution of this family there 

were multiple losses of this trait. Furthermore DI length 

is variable among Mustelidae family: from 50-60 days in 

mink (Neovison vison) to 245-275 days in marten (Martes 

martes) or sable (Martes zibellina). [Isakova 2004; Thom 

et al., 2004]. Mechanisms of transduction between active 

and inactive embryo stages and factors underlying the 

length of embryonic diapause are not clearly understood 

to date. It has been suggested that melatonin (pineal gland 

secret) is the crucial regulator of this processes. 

Melatonin secretion depends on photoperiod length and 

regulates synthesis of luteinizing hormone (LH), follicle 

stimulating hormone (FSH) and prolactin [Jack et al. 

1996; Murphy 2012]. Nonetheless there were no any 

molecular-genetic studies of DI mechanisms. Research of 

DI is of great interest for evolutionary biology and may 

also be important for reproductive medicine and fur 

industry. Moreover studies showed that presence/absence 


